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Abstract. A model for scalar quarks and gluons that successfully gives rise to a ln s behavior in high-energy
qq scattering and which contains a non-trivial three-gluon vertex is used to study collision theory with
the following aspects: i) A three-body interaction simulating QCD is present and ii) particle production
and annihilation occur naturally. In this paper, the collision term in the model is examined in detail in
the quasiparticle approximation. The construction of cross-sections in which self-energy terms are ordered
according to a coupling constant expansion is undertaken. It is shown explicitly which terms of second
order are required to obtain the scattering amplitudes that are two body in nature. Additional ordering in
the number of colors shows that quark loop diagrams are suppressed and gluon production or scattering
processes dominate. It is also shown that a consistent calculation of the scattering graphs at the two-loop
level also simultaneously yields terms that renormalize one-loop level graphs. This can then be extended
to arbitrary m → n processes. We examine the constraint equation briefly, discussing the appearance
of a width. The issue of pinch singularities is also addressed, and examples of the elimination of such
singularities in equilibrium are given explicitly.

PACS. 12.40.-y Other models for strong interactions – 05.20.Dd Kinetic theory – 12.38.Mh Quark-gluon
plasma – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

Collision theory is now more than a century old, yet over
time, as new applications have placed new demands for
theoretical exactness in formulation, there remain several
unclear points that prohibit direct practical applications.
This is unsatisfactory, since a detailed physical under-
standing of some complex physical phenomena requires
a description in terms of non-equilibrium physics. One
may think for example of heavy-ion collisions, which sim-
ulate conditions in the early universe, and which occurred
on an extremely small time scale in which chemical and
thermal equilibrium may not both have been reached. An
additional degree of complexity is introduced into these
modern problems in that phase transitions may occur and
these can play an important role.

The fundamentals of collision theory in an empirical
formulation were laid down by Boltzmann in 1872 and
have since become standard text book material in dealing
with non-equilibrium systems [1]. A field-theoretical basis
for this so-called transport equation originates from the
work of Schwinger [2] and Keldysh [3]. Simultaneously, a
constraint equation is shown to be essential for mathe-
matical consistency. From a non-relativistic point of view,
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the field-theoretical origin of the Boltzmann equation, as
a semiclassical equation containing two-body collisions is
thus complete. Generalizations of the Boltzmann equa-
tion, either relativistically for fermions or bosons, or as a
set of fully quantum equations, have been the subject of
the last decades. While the exact formal equations for the
transport and constraint equations have been known for
quite some time now, their interpretation in terms of phys-
ical functions has been difficult and is only to some extent
understood. In relativistic models, it has been shown how
two-body collisions arise from the lowest-order terms of
the proper self-energy that enters into the transport equa-
tion — but here only within a simple model with static
interactions. Going beyond this level in an exact fashion
within perturbation theory has not been addressed. It is
obvious, however, that two-body collisions are insufficient
for discussing dense systems, and systems in which three
and more body interactions and particle production occur.
Here there is a definite need for clarity.

From a technical perspective, the fact that collision
theory has developed slowly and continues to develop
slowly even after all this time, is that together with the
recognition of its possible relevance comes also the unde-
niable fact that it has a complicated structural basis. A lot
of arduous mathematical labor is essential just to estab-
lish the basic formal transport and constraint equations.
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This unfortunately does not lead to a simple and trans-
parent physical picture. Because of this, there are several
ad hoc approaches which can be commonly found in the
literature:

– Many authors rely on an intuitive extrapolation of the
semiclassical Boltzmann equation in their applications
(see for example, Geiger and Müller [4,5] who examine
heavy-ion collisions in extreme conditions). Here an
educated guess at an extended Boltzmann equation
is made in order to develop a numerical simulation
algorithm. In such an approach, often the transport
equation alone is examined; the constraint equation
is simply neglected. In such studies a first attempt at
putting this application on a firm theoretical basis was
subsequently made by [6].

– Some authors have centered their investigations on a
full quantum treatment of the non-equilibrium Green
function equations (see for example [7–9]). This ap-
proach has an aesthetic appeal, but in practice, there is
little possibility of its application, as the complexity of
solving many (16 or more) coupled integro-differential
equations can only be performed under severe physical
restrictions, namely that of no collisions.

Progress in understanding collision theory has been
made with the recent developments in real-time Green
function theory to calculate properties of systems in equi-
librium. As we have already mentioned, a theoretical
methodology for handling non-equilibrium Green func-
tions was developed by Schwinger and Keldysh [2,3].
Later, in the ‘80s, the development of thermal field theory
was initiated by Umezawa [10]. The resulting matrix of
real-time Green functions has revealed a striking resem-
blance to the matrix of Green functions that is obtained in
the Schwinger-Keldysh formalism. One can in fact quan-
tifiably demonstrate that Schwinger-Keldysh and thermal
field theory yield the same results in the limit that one
considers equilibrium systems. The real-time Green func-
tion formalism is extremely cumbersome. It is as unwieldy
as its non-equilibrium counterpart due to Schwinger and
Keldysh. It is especially cumbersome, when contrasted
with the elegant formulation of equilibrium field theory
by Matsubara, that was developed in the ‘60s, and which
simply makes extensive use of function theory. The histor-
ically late development of real-time Green function theory
is due to the fact that several difficulties in this approach
are immediately evident: Products of retarded and ad-
vanced Green functions occur, so that integration along
the real axis becomes problematic as the infinitesimal el-
ement ε → 0: the contour is pinched and the function is
singular. So called pinch singularities also manifest them-
selves as products of delta functions when working in a
causal/acausal framework. The fact now that two com-
pletely different formulations of equilibrium field theory
exist has enabled one to understand these apparent diffi-
culties in the real-time approach, and this in turn enables
one by comparison, to investigate similar situations in the
non-equilibrium theory.

In this paper, we do not intend to review all approaches
and applications of collision or kinetic theory. Rather our

main intention is to investigate certain questions. The first
of these is to examine how a perturbative treatment of
the collision integral can be expanded to go beyond the
standard two-body collisional approach, that in the semi-
classical approximation is just the Boltzmann equation.
Here the questions in mind are what happens if complex
vertices such as three (of four) particle interactions are al-
lowed? What role does particle production play? How can
this be systematically incorporated? Furthermore, since
we are intrinsically interested in a theory of quarks and
gluons, we wish to answer these questions without rais-
ing further difficulties like do our approximations preserve
gauge invariance? Thus, in order to concentrate on the de-
velopment of the collision integral, we choose a field theory
of quarks and gluons which is simplistic: both degrees of
freedom are chosen to be scalar. In addition, a three-body
self-interacting gluon vertex is introduced. In this form,
the model becomes interesting from another point of view.
This scalar quark and gluon model is one of the predeces-
sors of QCD in describing S-matrix behavior and leads
to the existence of pomerons. Thus this theory produces
the correct log s behavior in the calculations of elastic
quark-quark scattering at high energies. The origin of this
behavior is explicitly evident; it arises as a consequence
of a specific sum of leading terms, viz ladder diagrams.
Consequently another question dealt with in this study is
to examine whether the ladder sum appears as a natural
approximation in the collision integral when multiple glu-
ons are produced. Our interest in connecting the pomeron
picture with a quark and gluon picture lies also in the ap-
plication of pomeron phenomenology to high-energy col-
lisions. The VENUS-model of heavy-ion collisions for ex-
ample, is based on pomeron exchange. The application of
this model has been most successful in the past (see, e.g.,
ref. [11]), but is inadequate for describing very energetic
collisions such as are expected at the LHC. With this in
mind, a natural step is to ask the question as to whether a
simple link can be made from a quark and gluon model to
pomeron behavior from a non-equilibrium starting point,
given the fact that the original theory is known to lead to
the correct scattering at high energies. Although pomeron
behavior can be directly deduced from QCD per se, we
use this toy model here for its analytic simplicity. We do
not regard it as a substitute for QCD, and believe that
the next real steps in regarding QCD proper must be un-
dertaken. To our knowledge, there is no detailed study of
this model in equilibrium; and we do not undertake this
here.

For completeness, in addition to the papers on non-
equilibrium theory already cited, we draw attention in
general to the work of other authors in non-equilibrium
theory such as ref. [12] in which the formalistic consis-
tency required by the constraint approach was first em-
phasized, ref. [13], who insert dynamical spectral func-
tions into a semi-classical approximation, the classical ap-
proach of ref. [14], and lastly the field-theoretical approach
of ref. [15] for scalar electrodynamics and long wavelength
color fluctuations in QCD. This last reference contains a
wealth of further references.
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This paper is structured as follows. In the following
section, we briefly review the model of scalar quarks and
gluons, and indicate the results for elastic quark-quark
scattering. In sect. 3, for notational clarity, we then write
down the basic equations required for transport theory for
our scalar model in the Schwinger-Keldysh approach. We
first assume the quasiparticle approximation is valid, and
investigate the collision integral of the transport equation
in detail, identifying scattering graphs, particle renormal-
ization graphs and graphs which appear to be singular.
These issues, together with the mean-field approximation,
are discussed in sects. 4-7. In sect. 8, we return to the con-
straint equation, and examine the consequences of assum-
ing a finite width. We summarize and conclude in sect. 9.
Four appendices are attached: in A, we summarize real-
time field theory, while B contains some information on
the non-equilibrium formulation. In appendix C, techni-
cal color sums are listed, and appendix D gives an example
of the cancellation of pinch singularities for our model in
equilibrium.

2 Model of scalar quarks and gluons

In this section, we introduce and discuss the scalar par-
tonic model, and give the equations of motion for quark
and gluon fields. We briefly review high-energy scattering
within this model.

2.1 Scalar partonic model

We study a partonic model of QCD inspired by Polk-
inghorne [16] and used by Forshow and Ross [17] that con-
tains scalar partons. Quarks and antiquarks are described
by complex scalar fields φ, and gluons as the scalar field
χ coupled through the Lagrangian

L=∂µφ†i,l∂µφi,l+
1
2
∂µχa,r∂µχa,r−m2

2
χa,rχ

a,r

−gmφ†i,l(T a)j
i (T

r)m
l φj,mχa,r− gm

3!
fabcfrstχ

a,rχb,sχc,t.

(1)

The quark fields are regarded as massless, as one gen-
erally assumes for high-energy processes, while the glu-
ons are usually assigned a mass m a priori in order to
avoid infra-red divergences. There is an interaction be-
tween quarks and gluons as well as a cubic self-interaction
between gluons. Since in QCD the quartic interaction be-
tween gluons leads inelastic qq scattering to terms which
are sub-leading in ln s, such a quartic interaction among
gluons is not included within this model.

One notes that both the quark and gluon fields carry
two labels. Both labels refer to color groups. The fact
that a direct product of two color groups is necessary can
be seen on examining the three-gluon vertex term. This
term must be symmetric under the exchange of two glu-
ons since they are bosons. In addition, one expects that

Fig. 1. Leading-order contribution to pomeron exchange for
elastic quark-quark scattering.

the interaction vertex should be proportional to the (an-
tisymmetric) structure constants of the color group. A
single color group cannot meet these requirements, and
the simplest combination which can is a product of two
SU(Nc) groups. Thus the gluon field carries two color in-
dices (a, r = 1...(N2

c − 1)). Since the quark field trans-
forms in the fundamental representation of both of these
SU(Nc) groups, it must carry two color indices as well
(i, l = 1...Nc). The matrices T a and T r are the generators
and fabc and frst are the structure constants for the two
SU(Nc) groups, respectively. Thus they satisfy

[T a, T b] = ifabcT
c, [T r, T s] = ifrstT

t. (2)

Note in eq. (1) that the flavor index of the quark fields is
suppressed.

The equations of motion for the fields can be derived
from the Euler-Lagrange equations. They are

�φ(†)i,l = −gm(T a)i
j(T

r)l
mφ(†)j,mχa,r (3)

for the (anti-)quarks and

(� + m2)χa,r = −gm[φ†i,l(T a)i
j(T

r)m
l φj,m

+fabcfrstχb,sχc,t] (4)

for the gluons.

2.2 Elastic qq scattering at high energies

The main advantage of this simple partonic model is that a
calculation of the elastic quark-quark scattering amplitude
at high energies at T = 0 reflects pomeron behavior. In
this section, we simply quote these results, and for details,
we refer the reader to [17]. Note that these calculations are
performed in equilibrium and at T = 0 in contrast to the
rest of this paper.
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Quark-quark scattering is calculated via the exchange
of a color singlet. It is assumed that the two quarks emerge
from the scattering with the same color with which they
entered and that they have different flavors. Therefore,
one has to consider only diagrams with at least two ex-
changed gluons, and one can neglect diagrams with quarks
that are exchanged in the t-channel. The incoming quarks
have momenta p1 and p2, respectively. To lowest order,
this process is shown in fig. 1. Denoting the transferred
momentum as q = p1−p2, the Mandelstam variables read
as s = (p1 + p2)2 and t = q2. In the case of fig. 1, it is
easy to show that fig. 1b) follows from fig. 1a) only by a
kinematical transformation, so that it is only necessary to
calculate graphs of type (a). The imaginary part of the
amplitude can be immediately identified to be

�A =
1
2

∫
d(PS2)A(g)

0 (k)A(g)†
0 (k − g), (5)

where A(g)
0 (k) = −g2m2 1/(k2 −m2), and

∫
d(PS2) refers

to the phase space of the two lines which are cut in the
Sudakov fashion, i.e.∫

d(PS2) =
∫

d4l

(2π)3
d4l′

(2π)3
δ(l2)δ(l′2)(2π)4

×δ4(p1 + p2 − l − l′). (6)

One integral can be immediately performed, leaving one
further integral in one variable, which is denoted as k. The
further calculations are now performed in the Regge limit,
s � |t|. Therefore it is useful to parametrize the integrated
momenta in terms of Sudakov parameters ρ and λ:

k = ρp1 + λp2 + k⊥, (7)

where k⊥ is the momentum transverse to p1 and p2 and
this two-dimensional vector is represented by the boldface
k. In identifying further graphs which give rise to con-
tributions �A(s, t) ∝ sα(t), one arrives at the set with
n-rungs n = 1, ..,∞, as is indicated in fig. 2. The dashed
line indicates the cut taken for the direct application of the
Cutkosky rules. Applying these rules and keeping only the
leading ln s contributions in evaluating the infinite sum of
uncrossed ladder diagrams, one obtains the following re-
sult for the imaginary part of the scattering amplitude

�A(s, t) =
(N2

c − 1)2

16N4
c

g4m4

16π2s

×
∫

d2k
1

(k2 + m2)((k − q)2 + m2)

(
s

|t|
)1+αP (t)

, (8)

with the trajectory

αP (t) ≈ −1 +
g2N2

c

16π2

(
1 +

t

6m2

)
. (9)

In the Regge limit, the real part of A(s, t) vanishes. There-
fore A(s, t) is purely imaginary and given by eq. (8).

We point out that the selection of ladder diagrams for
the evaluation of the scattering amplitude, as indicated in

Fig. 2. n-rung ladder diagram with cut line (dashed line).

fig. 2 is highly suggestive, particularly with the cut drawn
in. One might wish to conclude that a) gluon production
is dominant, and b) that only ladder type graphs need
be considered in constructing gluon emission/absorptive
processes. As will be seen in transport theory, however,
one finds that a) is true, having its basis in the 1/Nc ex-
pansion, but b) cannot be justified, as it depends on the
special kinematical assumptions that are applicable to the
quark-quark scattering amplitude, but which do not occur
in the self-energy evaluation.

3 Transport theory for interacting bosonic
fields

In this section, we briefly introduce the Schwinger-Keldysh
formalism and the quasiparticle approximation. A com-
parison with the equilibrium real-time formulation of
finite-temperature field theory is made in appendix A.

For the purpose of establishing our notation, we give
the basic definitions and refer the reader to standard texts
[18–20]. The quark Green functions in the Schwinger-
Keldysh formalism [2,3] are defined as

iSc(x, y) =
〈
Tφi,l(x)φ†j,m(y)

〉
− 〈φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS−−(x, y) ,

iSa(x, y) =
〈
T̃ φi,l(x)φ†j,m(y)

〉
− 〈φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS++(x, y) ,

iS>(x, y) =
〈
φi,l(x)φ†j,m(y)

〉
− 〈φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS+−(x, y) ,

iS<(x, y) =
〈
φ†j,m(y)φi,l(x)

〉
− 〈φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS−+(x, y) , (10)
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Fig. 3. Closed time path.

and for the gluons as

iGc(x, y) =
〈
Tχa,r(x)χb,s(y)

〉
−〈χa,r(x)〉 〈χb,s(y)

〉
= iG−−(x, y) ,

iGa(x, y) =
〈
T̃ χa,r(x)χb,s(y)

〉
−〈χa,r(x)〉 〈χb,s(y)

〉
= iG++(x, y) ,

iG>(x, y) =
〈
χa,r(x)χb,s(y)

〉
−〈χa,r(x)〉 〈χb,s(y)

〉
= iG+−(x, y) ,

iG<(x, y) =
〈
χb,s(y)χa,r(x)

〉
−〈χa,r(x)〉 〈χb,s(y)

〉
= iG−+(x, y) . (11)

Here T and T̃ are the usual time and anti-time ordering
operators, respectively. As given, the Green functions fall
along the contour designated in fig. 3. Our convention fol-
lows that of ref. [20]. They satisfy a Dyson equation that
introduces the matrix of self-energies for either the quark
or gluonic sectors, Σq or Σg. Using a generic notation,
D = S or G and Π = Σq or Σg as appropriate, one may
write

D(x, y) =D0(x, y)−
∫

d4zd4wD0(x,w)Π(w, z)D(z, y)

= D0(x, y)−
∫

d4zd4wD(x,w)Π(w, z)D0(z, y). (12)

In a standard fashion, the transport and constraint equa-
tions can be derived, and this is summarized briefly in
appendix B. In terms of the center-of-mass variable X =
(x + y)/2 and the Fourier transform variable p conjugate
to the relative distance u = x − y, or Wigner transform,
the equations that one obtains for the off diagonal Green
functions, corresponding to the transport and constraint
equations are

−2ip∂XD−+(X, p) = I− , transport (13)

and(
1
2
�X − 2p2 + 2M2

)
D−+(X, p) = I+, constraint ,

(14)
respectively, where M is a generic parton mass, M = m for
the gluons and M = 0 for the quarks. I∓ is an abbreviation
for the combined functions

I∓ = Icoll + IA
∓ + IR

∓, (15)

and Icoll is the collision term,

Icoll = Π−+(X, p)Λ̂D+−(X, p)

−Π+−(X, p)Λ̂D−+(X, p) = Igain
coll − I loss

coll . (16)

IR
∓ and IA

∓ are terms containing retarded and advanced
components, respectively

IR
∓ =−Π−+(X, p)Λ̂DR(X, p)±DR(X, p)Λ̂Π−+(X, p) (17)

and

IA
∓ = ΠA(X, p)Λ̂D−+(X, p) ∓ D−+(X, p)Λ̂ΠA(X, p).

(18)
In eqs. (16) to (18), the operator Λ̂ is given by

Λ̂ := exp
{−i

2

(←−
∂ X

−→
∂ p −←−

∂ p
−→
∂ X

)}
. (19)

In order to proceed further, we have to calculate the self-
energies Π that occur in eqs. (16) to (18). The simplest
possible approximation is the so-called quasiparticle ap-
proximation, in which a free scalar parton of mass M is
assigned the Green functions

iD−+(X, p) =
π

Ep
{δ(Ep − p0)fa(X, p)

+δ(Ep + p0)f̄ā(X,−p)} , (20)

iD+−(X, p) =
π

Ep
{δ(Ep − p0)f̄a(X, p)

+δ(Ep + p0)fā(X,−p)} , (21)

iD−−(X, p) =
i

p2 − M2 + iε
+ Θ(−p0)iD+−(X, p)

+Θ(p0)iD−+(X, p)

=
i

p2 − M2 + iε
+

π

Ep
{δ(Ep − p0)fa(X, p)

+δ(Ep + p0)fā(X,−p)} , (22)

iD++(X, p) =
−i

p2 − M2 − iε
+ Θ(−p0)iD+−(X, p)

+Θ(p0)iD−+(X, p)

=
−i

p2 − M2 − iε
+

π

Ep
{δ(Ep − p0)fa(X, p)

+δ(Ep + p0)fā(X,−p)} , (23)

with E2
p = p2 + M2, and which are given in terms of the

corresponding scalar quark and gluon distribution func-
tions, fa(X, p), and f̄a = 1 + fa, where a denotes the
parton type a = q, g.

Our task in this paper is to construct an equation for
the distribution functions for quarks and gluons fa(X, p)
from eqs. (13) to (18), using the quasiparticle Green func-
tions of the form given in eqs. (20) to (23). To do so, it is
necessary to integrate the entire eq. (13) and eq. (14) over
an interval ∆± which contains ±Ep(X). To lowest order
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in an expansion that sets Λ̂ = 1, the terms IR,A
± simplify

considerably. In particular

IR,A
− = 0 (24)

so that I− in eqs. (13) and (15) becomes

I− = Icoll. (25)

The integration of eq. (13) over ∆± requires a construction
of the form

Jcoll = Jgain
coll − J loss

coll =
∫

∆+
dp0 Igain

coll −
∫

∆+
dp0 I loss

coll (26)

for the right-hand side. This integral can be easily per-
formed, and one has

Jcoll =
∫

∆+
dp0 Π−+(X, p)D+−(X, p)

−
∫

∆+
dp0 Π+−(X, p)D−+(X, p)

= −i
π

Ep
Π−+(X, p0 =Ep, �p ) f̄a(X, �p )

+i
π

Ep
Π+−(X, p0 =Ep, �p ) fa(X, �p ), (27)

i.e. the off-diagonal quasiparticle self-energies are required
to be calculated on-shell.

Therefore the complete transport equation reads

2p∂Xfa(X, �p ) = iΠ−+(X, p0 =Ep, �p ) f̄a(X, �p )

−iΠ+−(X, p0 =Ep, �p ) fa(X, �p ). (28)

In the same approximation, i.e. setting Λ̂ = 1 and neglect-
ing the term proportional to �X , the constraint equation
takes the form[−2p2 + 2M2 − 2ΠA(X, p)

]
D−+(X, p) =

Π−+(X, p)D+−(X, p) − Π+−(X, p)D−+(X, p)

−2Π−+(X, p)DR(X, p). (29)

In case of vanishing self-energies, eq. (28) is the equation
for free streaming,

2p∂Xfa(X, �p ) = 0, (30)

while the constraint equation (29) becomes after an inte-
gration over ∆+ :

(E2
p − �p 2 − M2)fa(X, �p ) = 0. (31)

The last equation is the expression of the fact that the
partons have to be on mass-shell, and is consistent with
the quasiparticle assumption, eqs. (20) to (23) made in
the first place.

Let us now examine the transport equation further.
Since the number of particles can only be changed via col-
lisions, the right-hand side of eq. (28) is called the collision
term. The second term of the right-hand side is propor-
tional to fa and is therefore identified as the loss term [21],

while the first one, proportional to f̄a = 1 + fa, is iden-
tified as a gain term. Naturally, one would expect that
it should always be possible to express the collision term
in terms of differential scattering cross-sections as occurs
in the Boltzmann equation when only two-body processes
are present, or alternatively in terms of transition matrix
elements.

Several authors have followed this line of thought: for
some simple scalar models [22] and the NJL model [9],
which contain only a simple form of interaction, it has
been shown rigorously that the theoretical generalization
of the non-relativistic formalism indeed leads to the rel-
ativistic Boltzmann equation with two-body scattering.
Particularly within QCD and quark-gluon dynamics, how-
ever this generalization is far more difficult. Reference [6]
also attempts a formal identification of the Boltzmann
equation from quark-gluon dynamics to the two-body
scattering level in the Keldysh formalism. This derivation
is however in itself at the two-body level theoretically in-
complete. Furthermore, the two-body level is insufficient
for the description of the complex type of processes that
can occur in such systems, such as multiple gluon produc-
tion. A precise theoretical understanding of how such a
transport theory should be generalized to include particle
production within a non-Abelian model has not been ad-
dressed. Rather, ad hoc assumptions for the form of such
a generalized collision term have been made on the basis
of empirical expectations (see for example [4]).

Our task is therefore to investigate the collision term
in a non-Abelian theory exactly in the two-body level and
beyond this, and to express, if possible, the self-energies in
terms of cross-sections or, equivalently, in terms of scat-
tering amplitudes. Due to our particular choice of masses
(quarks massless, gluons massive) the lowest-order pro-
cesses that can occur, are the annihilation process qq̄ → g
and the decay process g → qq̄. One expects to obtain these
processes from the mean-field self-energies. Two-loop self-
energies, on the other hand, should yield 2 → 2 scattering
processes. These processes, which are far more complex
than in a simple model with a static interaction as in [9]
for example, are detailed here. This complexity also oc-
curs in the QCD case, and the results here can easily be
extrapolated to this, in order to complete the derivations
attempted in [6]. We then examine higher-order contribu-
tions to the aforementioned processes.

To render the calculations tractable we will neglect the
constraint equation (14) beyond the Hartree level in the
following sections. Its influence will be discussed in sect. 8.

4 The collision integral — mean-field
self-energies

In this section, we return to the transport equation
eq. (28). We evaluate the self-energies to first order in
the interaction strength and illustrate their role in the
transport equation in the semi-classical limit.
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Fig. 4. Quark and gluon generic Hartree self-energies. Solid
lines refer to quarks, wavy lines to gluons.

4.1 Hartree self-energies

For the scalar parton model, two generic kinds of Hartree
graphs can be identified in the quark and gluon self-
energies. These are depicted in fig. 4. For Hartree dia-
grams of any kind, off diagonal self-energies are per def-
inition zero and only diagonal elements can possibly be
constructed, i.e. Σ−−

H or Σ++
H . However, all such diagrams

vanish identically in this model. The reason for this lies in
the color factors: for the quark self-energy graph in fig. 4
that contains a quark-loop, a single SU(3) color group
leads to the associated color factor

FH,q = taiitr(t
a) = 0, (32)

since ta = λa/2, where λa are the Gell-Mann matrices.
In the above expression, i denotes the external quark mo-
mentum and is therefore not to be summed over. For the
quark self-energy containing a gluon line, the color factor
for a single SU(3) group is also vanishing,

FH,g = taiiT
a
bb = −itaiifabb = 0. (33)

Similar arguments apply to the gluon self-energies. Thus,
no mass renormalization occurs due to Hartree terms.

A semiclassical expansion of the transport and con-
straint equations thus leads to free streaming described
by eqs. (30) and (31).

4.2 Fock self-energies

The next type of graph contributing to the mean-field ex-
pansion is the Fock term. The generic diagrams for the
quark and gluon self-energies are shown in fig. 5. (Fig-
ure 5(b) is strictly speaking a vacuum polarization graph
for the gluons.)

We start with the quark sector and examine as an
example, the gain term generated by the Fock term
Σ−+

F,q (X, p). By inspection, one has

iΣ−+
F,q (X, p) = −g2m2F 2

F,q

∫
d4p1

(2π)4

∫
d4p2

(2π)4

×S−+(X, p1)G+−(X, p2)(2π)4δ(4)(p−p1+p2), (34)

and FF,q is the Fock color factor for a single SU(Nc)
group,

FF,q = taijt
a
ji =

N2
c − 1
2Nc

δii. (35)

Fig. 5. Quark and gluon generic one-loop self-energies. The
quark self-energy plus the first gluon self-energy are Fock dia-
grams, while (b) is a polarization insertion.

The contribution to the collision term that this makes,
using eq. (27) is

Jgain
F,coll = −i

π

Ep
Σ−+

F,q (X, p0 = Ep, �p )f̄q(X, �p ), (36)

which, on inserting the explicit expressions for S−+(X, p)
and G+−(X, p) from eqs. (20) and (21) leads to four dis-
tinct terms,

Jgain
F,coll = −g2m2F 2

F

π

Ep

∫
d4p1

(2π)4

∫
d4p2

(2π)4

×(2π)4δ(4)(p + p1 − p2)
π

E1

π

E2

4∑
i=1

Ti, (37)

where

T1 = δ(E1−p0
1)δ(E2−p0

2)f̄q̄(X, p1)fg(X, p2)f̄q(X, �p ) ,

T2 = δ(E1−p0
1)δ(E2+p0

2)f̄q̄(X, p1)f̄g(X,−p2)f̄q(X, �p ) ,

T3 = δ(E1+p0
1)δ(E2+p0

2)fq(X,−p1)f̄g(X,−p2)f̄q(X, �p ) ,

T4 = δ(E1+p0
1)δ(E2−p0

2)fq(X,−p1)fg(X, p2)f̄q(X, �p ) .

(38)

By attributing unbarred functions f to incoming particles
and barred functions f̄ to outgoing ones, one can see that
T1..T4 correspond to the processes g → qq̄, Ø→ qq̄g, q →
qg and qg → q. The last three of these are kinematically
forbidden, while the former is possible, since the gluons
are endowed with a finite mass. Performing the integrals
over p0

1 and p0
2, eq. (37) becomes

Jgain
F,coll = − π

Ep

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(p + p1 − p2)

×|Mg→qq̄|2fg(X, �p2)f̄q̄(X, �p1)f̄q(X, �p ). (39)

The loss term is obtained in a similar fashion or by ex-
changing f with f̄ , since the matrix element is symmetric.
Combining both terms, the revised transport equation for
quarks is obtained from eq. (28) as

2p∂Xfq(X, �p ) =
∫

d3p1

(2π)32E1

d3p2

(2π)32E2

×(2π)4δ(4)(p + p1 − p2)|Mg→qq̄|2
× [fg(X, �p2)f̄q̄(X, �p1)f̄q(X, �p )

−f̄g(X, �p2)fq̄(X, �p1)fq(X, �p )
]
. (40)
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Fig. 6. All diagrams contributing to Σ(2)+−.

This is the final expression for the Fock transport equa-
tion. One can alternatively introduce a cosmetic recombi-
nation or decay rate in which case eq. (40) can be written
symbolically as

2p∂Xfq(X, �p ) =
∫

d3p1

(2π)32E1

∫
dΩ

dσ

dΩ

∣∣∣∣
qq̄→g

F

× [fg(X, �p2)f̄q̄(X, �p1)f̄q(X, �p )

−f̄g(X, �p2)fq̄(X, �p1)fq(X, �p )
]
, (41)

where F is the flux factor, and∫
dΩ

dσ

dΩ
=
∫

dQ
|M|2

F
(42)

with the invariant phase space factor dQ given as dQ =
(2π)4δ(4)(p + p1 − p2) d3p2/((2π)32E2).

An analysis of the self-energy graph 5(a) of the gluon
sector, Σ−+

F,g(a)(X, p ) along the previous lines leads to pro-
cesses g → gg, Ø→ ggg, and gg → g, all of which are
kinematically prohibited. One thus obtains

(Jcoll(a)
F,gain/loss)gluonic graph = 0. (43)

This can be attributed to the fact that the self-energies
are evaluated on-shell, i.e. we may write

Σ−+
F,g(a)(X, p0 = Ep, �p ) = Σ+−

F,g(a)(X, p0 = Ep, �p ) = 0,
(44)

which is the statement that an on-shell particle cannot
decay into two on-shell particles of the same kind.

The second graph in the gluonic case does not vanish.
This self-energy Σ−+

F,g(b) that enters into the description

of the gain in gluons, is precisely that given in eq. (34),
but with G+−(X, p2) replaced by S+−(X, p2). The color
factor in this case is also modified, being FF,g = 1/2δaa.
An analysis of the self-energy along the same lines leads
to the processes q → qg, q̄ → q̄g, Ø→ gqq̄ and qq̄ → g, the
last of which is the only term that can contribute. Thus
the time evolution of the gluon distribution function is
given by

2p∂Xfg(X, �p ) =
∫

d3p1

(2π)32E1

d3p2

(2π)32E2

×(2π)4δ(4)(p + p1 − p2)|Mg→qq̄|2
× [fq(X, �p2)fq̄(X, �p1)f̄g(X, �p )

−f̄q(X, �p2)f̄q̄(X, �p1)fg(X, �p )
]
. (45)

We conclude this section by commenting the result
that while the Fock term 5(a) for gluons vanishes identi-
cally, the Fock term for the quark self-energy does not. A
term of this kind occurs in this model because the quarks
are massless, while the gluons are massive. The relevance
of this Fock term thus depends on the form of the under-
lying theory.

5 The collision integral — beyond the mean
field

For clarity, we will consider in the following only the quark
sector in detail. The calculations for the gluonic sector are
similar. To proceed further in calculating the collision in-
tegral of eq. (27) to next to leading order, we require the
off-diagonal self-energy with two loops. To be specific, let
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us consider first the loss term for which we need Σ(2)+−.
All of its two-loop contributions are shown in fig. 6. Ac-
cording to their topology, we denote these graphs as rain-
bow (R), ladder (L), cloud (C), exchange (E) and quark
loop graphs (QL). In addition to this, one has to sum over
the inner vertices. There are four possibilities of arranging
the signs at the inner vertices, which yields the diagrams
a) to d) for every type of topology.

5.1 2 → 2 scattering processes

Let us deal first with the diagrams R a), L a), C a), C b),
E a), E b) and QL a) of fig. 6. All of these diagrams are
necessary to obtain all possible 2 → 2 scattering processes
as we will now show.

We first note that the diagram E b) is the exchange
graph of QL a), because both of these diagrams contain
three off-diagonal quark Green functions. We call the sum
of these two diagrams

Σ
(2)+−
quark-quark(X, p) = Σ

(2)+−
E,b) (X, p) + Σ

(2)+−
QL,a) (X, p) (46)

and collect the remaining five graphs in the construct

Σ
(2)+−
quark-gluon(X, p) = Σ

(2)+−
R,a) (X, p) + Σ

(2)+−
L,a) (X, p)

+Σ
(2)+−
C,a) (X, p) + Σ

(2)+−
C,b) (X, p) + Σ

(2)+−
E,a) (X, p). (47)

This subdivision in eqs. (46) and (47) to J
(2)loss
coll will be

handled separately, as the first term will be seen to lead to
elastic quark-quark and quark-antiquark differential scat-
tering cross-sections in the transport equation, while the
Σquark-gluon term will be seen to lead to processes involv-
ing gluons, such as the processes qq̄ → gg and qg → qg.

5.1.1 Quark-quark and quark-antiquark scattering
cross-sections.

Explicit expressions for the quark-loop and its exchange
diagram self-energies required in eq. (46) are obtained as

Σ
(2)+−
QL,a) (X, p) = −g4m4F 2

QL

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)4δ(4)(p − p1 − p2)

×(2π)4δ(4)(p2 − p3 + p4)S+−(X, p1)G++(X, p2)
×S+−(X, p3)S−+(X, p4)G−−(X, p2) (48)

and

Σ
(2)+−
E,b) (X, p) = −g4m4F 2

E

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)4δ(4)(p − p1 − p2)

×(2π)4δ(4)(p2 − p3 + p4)S+−(X, p1)G−−(X, p2)
×S+−(X, p3)S−+(X, p4)G++(X, p − p3), (49)

where FQL and FE are color factors, that will be given
explicitly in appendix C. Since they do not affect our ar-
gument, we suppress them in the following.

The collision integral for loss from eq. (27) can be di-
rectly evaluated, to give the quark-loop and exchange con-
tributions

J
(2)loss
coll,q = ig4m4 π

Ep

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)8δ(4)(p − p1 − p2)δ(4)(p2 − p3 + p4)
×{G++(X, p2)G−−(X, p2)

+G−−(X, p2)G++(X, p − p3)
}

×
(
−i

π

E1

)(
−i

π

E3

)(
−i

π

E4

) 8∑
i=1

Ti, (50)

where

T1 = δ(E1 + p0
1) δ(E3 + p0

3)
×δ(E4 + p0

4) fq̄(−p1) fq̄(−p3) f̄q̄(−p4) fq(�p ) ,

T2 = δ(E1 + p0
1) δ(E3 + p0

3)
×δ(E4 − p0

4) fq̄(−p1) fq̄(−p3) fq(p4) fq(�p ) ,

T3 = δ(E1 + p0
1) δ(E3 − p0

3)
×δ(E4 + p0

4) fq̄(−p1) f̄q(p3) f̄q̄(−p4) fq(�p ) ,

T4 = δ(E1 + p0
1) δ(E3 − p0

3)
×δ(E4 − p0

4) fq̄(−p1) f̄q(p3) fq(p4) fq(�p ) ,

T5 = δ(E1 − p0
1) δ(E3 + p0

3)
×δ(E4 + p0

4) f̄q(p1) fq̄(−p3) f̄q̄(−p4) fq(�p ) ,

T6 = δ(E1 − p0
1) δ(E3 + p0

3)
×δ(E4 − p0

4) f̄q(p1) fq̄(−p3) fq(p4) fq(�p ) ,

T7 = δ(E1 − p0
1) δ(E3 − p0

3)
×δ(E4 + p0

4) f̄q(p1) f̄q(p3) f̄q̄(−p4) fq(�p ) ,

T8 = δ(E1 − p0
1) δ(E3 − p0

3)
×δ(E4 − p0

4) f̄q(p1) f̄q(p3) fq(p4) fq(�p ) . (51)

One sees that there are eight terms, or eight processes in
this expression. However, due to energy momentum con-
servation T1, T2, T4, T6 and T7 vanish, leaving only T3, T5

and T8. This is a direct consequence of the on-shell nature
of the quasiparticle approximation. If this were relaxed,
all terms would necessarily have to be included.

We can reorganize this expression into a recognizable
physical form by making some simple manipulations. Let-
ting pi → −pi for the antiquark states and performing the
p0
1, p0

3, p0
4 and the p2 integration by absorbing the appro-
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priate δ-functions, we obtain

J
(2)loss
coll,q =−g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4

×{δ(4)(p + p1 − p3 − p4) fq̄(�p1) f̄q(�p3) f̄q̄(�p4) fq(�p )

× [G++(X, p + p1)G−−(X, p + p1)

+G−−(X, p + p1)G++(X, p − p3)
]

+δ(4)(p − p1 + p3 − p4) f̄q(�p1) fq̄(�p3) f̄q̄(�p4) fq(�p )

× [G++(X, p − p1)G−−(X, p − p1)

+G−−(X, p − p1)G++(X, p + p3)
]

+δ(4)(p − p1 − p3 + p4) f̄q(�p1) f̄q(�p3) fq(�p4) fq(�p )

× [G++(X, p − p1)G−−(X, p − p1)

+G−−(X, p − p1)G++(X, p − p3)
]}

. (52)

The first two terms of this expression can be combined if
one makes the substitution p1 ↔ p3 in the second term.
The third term has a symmetry in p1 and p3 and can be
rewritten as one half the sum of two terms with p1 and p3

interchanged. The loss term then becomes

J
(2)loss
coll,q =−g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4

×{δ(4)(p + p1 − p3 − p4) fq̄(�p1) f̄q(�p3) f̄q̄(�p4) fq(�p )

× [G++(X, p + p1)G−−(X, p + p1)

+G−−(X, p + p1)G++(X, p − p3)
+G++(X, p − p3)G−−(X, p − p3)
+G−−(X, p − p3)G++(X, p + p1)

]
+δ(4)(p − p1 − p3 + p4) f̄q(�p1) f̄q(�p3) fq(�p4) fq(�p )

×1
2
[
G++(X, p − p1)G−−(X, p − p1)

+G−−(X, p − p1)G++(X, p − p3)
+G++(X, p − p3)G−−(X, p − p3)
+G−−(X, p − p3)G++(X, p − p1)

]}
. (53)

Using the fact that [iG−−(p)]† = iG++(p) and making
the substitution p1 ↔ p4 in the second term, one is able to
identify the absolute values squared of the Green functions
occurring in J

(2),loss
coll,q . One has

J
(2)loss
coll,q = g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3

(2π)32E3

d3p4

(2π)32E4

×(2π)4δ(4)(p + p1 − p3 − p4)

×
{

1
2

∣∣iG−−(X, p − p3) + iG−−(X, p − p4)
∣∣2

×fq(�p ) fq(�p1) f̄q(�p3) f̄q(�p4)

+
∣∣iG−−(X, p + p1) + iG−−(X, p − p3)

∣∣2
×fq(�p ) fq̄(�p1) f̄q(�p3) f̄q̄(�p4)

}
. (54)

Fig. 7. Feynman diagrams for the matrix element for elastic
quark-quark scattering, elastic quark-antiquark scattering, for
the process qq̄ → gg, and for the process qg → qg.

Now one may recognize the scattering amplitude for elas-
tic quark-quark scattering,

−iMqq→qq(p1 → 34) =

(−igm)2
[
iG−−(p − p3) + iG−−(p − p4)

]
, (55)

and the scattering amplitude for quark-antiquark scatter-
ing,

−iMqq̄→qq̄(p1 → 34) =

(−igm)2
[
iG−−(p + p1) + iG−−(p − p3)

]
, (56)

occurring in eq. (54), which may be concisely written as
to give the final result

J
(2)loss
coll,q =

π

Ep

∫
d3p1

(2π)32E1

d3p3

(2π)32E3

d3p4

(2π)32E4

×(2π)4δ(4)(p + p1 − p3 − p4)

×
{

1
2
|Mqq→qq(p1 → 34)|2 fq(�p ) fq(�p1) f̄q(�p3) f̄q(�p4)

+ |Mqq̄→qq̄(p1 → 34)|2 fq(�p ) fq̄(�p1) f̄q(�p3) f̄q̄(�p4)
}
. (57)

The Feynman graphs corresponding to these processes
are shown in fig. 7 a) and b), respectively.

5.1.2 Quark-gluon scattering cross-sections.

We now turn our attention to the graphs of Σ
(2)+−
quark-gluon

of eq. (47), which will lead to scattering processes that



D.S. Isert et al.: Transport theory for a scalar quark & gluon model 463

involve gluonic degrees of freedom. As in the previous sec-
tion, the Feynman rules for non-equilibrium processes can
be applied to these diagrams and the result Wigner trans-
formed. This results in the following expressions for the
self-energies:

Σ
(2)+−
R,a) (X, p) = −g4m4F 2

R

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)4δ(4)(p − p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G+−(X, p1)S++(X, p − p3)

×G+−(X, p3)S+−(X, p4)S−−(X, p − p3) (58)

for the rainbow diagram,

Σ
(2)+−
L,a) (X, p) = −1

2
g4m4F 2

L

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)4δ(4)(p − p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G+−(X, p1)G++(X, p2)

×G+−(X, p3)S+−(X, p4)G−−(X, p2) (59)

for the ladder graph,

Σ
(2)+−
C,a)/b)(X, p) = −g4m4F 2

C

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)4δ(4)(p − p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G+−(X, p1)G±±(X, p2)

×G+−(X, p3)S+−(X, p4)S∓∓(X, p − p3) (60)

for the two cloud diagrams, and

Σ
(2)+−
E,a) (X, p) = −g4m4F 2

E

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)4δ(4)(p − p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G+−(X, p1)S++(X, p − p4)
×G+−(X, p3)S+−(X, p4)S−−(X, p − p3) (61)

for the first exchange diagram. FR, FL, FC and FE are
appropriate color factors, that will be discussed in detail
in appendix C, but which will be suppressed here. Note
that a factor 1/2 occurs in the expression for the ladder
diagram because of the gluon loop. The expressions for
Σ(2)−+ are obtained from the ones for Σ(2)+− by exchang-
ing − and +. The loss term of eq. (27) incorporating the
first rainbow, cloud, ladder and exchange graphs, is given

as

J
(2)loss
coll,g = ig4m4 π

Ep

∫
d4p1

(2π)4
d4p2

(2π)4
d4p3

(2π)4
d4p4

(2π)4

×(2π)8δ(4)(p − p1 − p2)δ(4)(p2 − p3 − p4)
×{S++(X, p − p3)S−−(X, p − p3)

+
1
2
G++(X, p2)G−−(X, p2)

+G++(X, p2)S−−(X, p − p3)
+G−−(X, p2)S++(X, p − p3)
+S++(X, p − p4)S−−(X, p − p3)

}
×
(
−i

π

E1

)(
−i

π

E3

)(
−i

π

E4

) 8∑
i=1

Ti, (62)

where

T1 = δ(E1 + p0
1) δ(E3 + p0

3)
×δ(E4 + p0

4) fq̄(−p1) fḡ(−p3) fḡ(−p4) fq(�p ) ,

T2 = δ(E1 + p0
1) δ(E3 + p0

3)
×δ(E4 − p0

4) fq̄(−p1) fḡ(−p3) f̄g(p4) fq(�p ) ,

T3 = δ(E1 + p0
1) δ(E3 − p0

3)
×δ(E4 + p0

4) fq̄(−p1) f̄g(p3) fḡ(−p4) fq(�p ) ,

T4 = δ(E1 + p0
1) δ(E3 − p0

3)
×δ(E4 − p0

4) fq̄(−p1) f̄g(p3) f̄g(p4) fq(�p ) ,

T5 = δ(E1 − p0
1) δ(E3 + p0

3)
×δ(E4 + p0

4) f̄q(p1) fḡ(−p3) fḡ(−p4) fq(�p ) ,

T6 = δ(E1 − p0
1) δ(E3 + p0

3)
×δ(E4 − p0

4) f̄q(p1) fḡ(−p3) f̄g(p4) fq(�p ) ,

T7 = δ(E1 − p0
1) δ(E3 − p0

3)
×δ(E4 + p0

4) f̄q(p1) f̄g(p3) fḡ(−p4) fq(�p ) ,

T8 = δ(E1 − p0
1) δ(E3 − p0

3)
×δ(E4 − p0

4) f̄q(p1) f̄g(p3) f̄g(p4) fq(�p ). (63)

Once again, eight terms result from this multiplica-
tion. Now, again due to energy momentum conservation,
T1, T2, T3, T5 and T8 vanish, and we are left with three
non-vanishing terms, T4, T6 and T7.

Applying the same procedure as for J
(2)loss
coll,q as in the

previous section, one can regroup the remaining terms to
read

J
(2)loss
coll,g = g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3

(2π)32E3

d3p4

(2π)32E4

×(2π)4δ(4)(p + p1 − p3 − p4)

×
{

1
2

∣∣iG−−(X, p + p1) + iS−−(X, p − p3)

+iS−−(X, p − p4)
∣∣2 fq(�p ) fq̄(�p1) f̄g(�p3) f̄g(�p4)

+
∣∣iS−−(X, p + p1) + iG−−(X, p − p3)

+iS−−(X, p − p4)
∣∣2 fq(�p ) fg(�p1) f̄q(�p3) f̄g(�p4)

}
. (64)
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In order to identify the physical processes that give rise to
these terms, we examine first all possible contributions to
the annihilation process qq̄ → gg. The Feynman graphs for
this within this model are shown in fig. 7 c). The scattering
amplitude associated therewith is

−iMqq̄→gg(p1 → 34) = (−igm)2

× [iG−−(p+p1) + iS−−(p−p3) + iS−−(p−p4)
]
. (65)

In a similar manner, the elastic scattering process qg →
qg, which is shown in fig. 7 d), has the scattering amplitude

−iMqg→qg(p1 → 34) = (−igm)2

× [iS−−(p+p1) + iG−−(p−p3) + iS−−(p−p4)
]
. (66)

One can identify the absolute value squared of eqs. (65)
and (66) in eq. (64) and therefore J

(2)loss
coll,g can be written

as

J
(2)loss
coll,g =

π

Ep

∫
d3p1

(2π)32E1

d3p3

(2π)32E3

d3p4

(2π)32E4

×(2π)4δ(4)(p + p1 − p3 − p4)

×
{

1
2
|Mqq̄→gg(p1 → 34)|2 fq(�p ) fq̄(�p1) f̄g(�p3) f̄g(�p4)

+ |Mqg→qg(p1 → 34)|2 fq(�p )fg(�p1)f̄q(�p3)f̄g(�p4)
}

. (67)

The complete loss term is obtained by adding eq. (57) and
(67),

J
(2)loss
coll = J

(2)loss
coll,q + J

(2)loss
coll,g . (68)

The gain term can be constructed by replacing f ↔ f̄ in
the complete loss term. With the relation

dσ

dΩ
=

|M|2
|�vp − �v1|2Ep2E1

dQ

dΩ
(69)

and the phase space factor

Q = (2π)4δ(4)(p+ p1 − p3 − p4)
d3p3

(2π)32E3

d3p4

(2π)32E4
, (70)

the final form for the Boltzmann equation, calculated for
two-loop self-energy graphs, is for quarks (a = q)

2p∂Xfa(X, �p ) =
∫

dΩ
d3p1

(2π)32E1
|�vp − �v1|2Ep2E1

×
4∑

j=1

sj
dσj

dΩ

∣∣∣∣
ab→cd

[
f̄a(�p )f̄b(�p1)fc(�p3)fd(�p4)

−fa(�p )fb(�p1)f̄c(�p3)f̄d(�p4)
]
, (71)

where partons b, c, and d can be a quark, antiquark or
gluon, and j labels the four processes j = 1...4 correspond-
ing to qq̄ → gg, qg → qg , qq → qq and qq̄ → qq̄. The sj

are symmetry factors s1 = s3 = 1/2 and s2 = s4 = 1.
The transport equation for gluons can be obtained in

an analogous way and calculated for two loops, it takes the
same form as eq. (71) with a = g. Then j labels the four
processes j = 1...4 corresponding to gg → gg, gg → qq̄,
gq → gq and gq̄ → gq̄. The appropriate symmetry factors
are s1 = 1/2 and s2 = s3 = s4 = 1.

5.2 Higher-order corrections to the process qq̄ → g

Now, we wish to demonstrate precisely that the remaining
two-loop graphs contribute to corrections of order g3m3 to
the lower-order process qq̄ → g. To demonstrate this, we
arbitrarily examine the set of quark-loop diagrams. The
QL a) graph of fig. 6 leads directly to the qq and qq̄ cross-
sections of fig. 7 a) and b), while the three graphs, QL
b)-d) of fig. 6 were not required for the evaluation of these
cross-sections. We notice that the quark-loop self-energy
graphs contain a self-energy insertion which is just the
gluonic Fock self-energy shown in fig. 5(b). To simplify
our notations, we call it in the following Πij(X, k) and it
reads as

−iΠij(X, k) := (−)i+j(igm)2

×
∫

d4l

(2π)4
iSij(X, k + l) iSji(X, l) , (72)

where the color factor is suppressed. Here i, j = +,− and
(−)i+j = +1 (−1) for i = j (i �= j).

We commence now with the diagram QL b) of fig. 6
which is given by

−iΣ
(2)+−
QL,b) (X, p) = g2m2F 2

QL

∫
d4p1

(2π)4
d4p2

(2π)4

×(2π)4δ(4)(p − p1 − p2) iS+−(X, p1)
×iG+−(X, p2) (−iΠ++(X, p2))iG++(X, p2), (73)

where F 2
QL is again the color factor given in eq. (C.12).

The corresponding loss term of the collision integral of
eq. (27) to this self-energy reads as

J
(2)loss
coll,QL,b) = −i

π

Ep
Σ

(2)+−
QL,b) (X, p0 = Ep, �p )fq(X, �p ). (74)

In this expression, the product iS+−(X, p1)iG+−
(X, p2)fq(X, �p ) occurs. Inserting the quasiparticle approx-
imation for the Green functions of eqs. (20) and (21), we
obtain for this product the sum of four terms:

T1 =
π

E1

π

E2
δ(E1 − p0

1)δ(E2 − p0
2)

×f̄q(X, p1)f̄g(X, p2)fq(X, �p ) ,

T2 =
π

E1

π

E2
δ(E1 − p0

1)δ(E2 + p0
2)

×f̄q(X, p1)fg(X,−p2)fq(X, �p ) ,

T3 =
π

E1

π

E2
δ(E1 + p0

1)δ(E2 − p0
2)

×fq̄(X,−p1)f̄g(X, p2)fq(X, �p ) ,

T4 =
π

E1

π

E2
δ(E1 + p0

1)δ(E2 + p0
2)

×fq̄(X,−p1)fg(X,−p2)fq(X, �p ) . (75)

By attributing again f to incoming particles and f̄ to
outgoing ones, we see that T1...T4 correspond to the
processes q → qg, qg → q, qq̄ → g and qq̄g →Ø.
Since the quarks are massless, while the gluons are en-
dowed with a finite mass, the processes corresponding
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Fig. 8. The process qq̄ → g up to order (gm)3.

to T1, T2 and T4 are kinematically forbidden as also oc-
curred in the discussion of the Fock term in subsect. 4.2.
One thus has one remaining non-vanishing contribution
iS+−(X, p1)iG+−(X, p2)fq(X, �p ) = T3. This product is
now inserted into eq. (74). In the resulting expression, we
interchange p1 with −p1 and on performing the p0

1 and p0
2

integrations, we find the result

J
(2)loss
coll,QL,b) = − π

Ep
g2m2F 2

QL

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

×(2π)4δ(4)(p + p1 − p2)
×G++(X, p2)Π++(X, p2)
×fq̄(X, �p1)f̄g(X, �p2)fq(X, �p ) (76)

as the remaining contribution of the QL b) graph to the
collision integral.

Since T3 corresponds to the process qq̄ → g which has
also come to the fare in sect. 4, we would like to take a
closer look at this process. In fig. 8, all Feynman diagrams
for this process are shown up to order g3m3. As mentioned
in appendix A, the vertices linked to external lines are
s = − (“physical fields”), while the inner vertices can be
of type − or + and one has to include all possibilities. That
leads to a doubling of the diagrams with inner vertices and
we obtain, in addition to the diagrams which one has in
T = 0 equilibrium field theory, i.e. diagrams with only −
vertices, (in our case graph a), b), c), d), e), f) and g)),
also diagrams with one + vertex, i.e. in our case graph
d′), e′), f′) and g′).

The scattering amplitude associated with fig. 8a) has
purely a point-like structure with color groups occurring:

−iMa)
qq̄→g = −igmtaij ⊗ trlm , (77)

while from fig. 8d), one has

−iMd)
qq̄→g = −igm[tbjitr(t

bta)]

⊗[tsmltr(t
str)]G−−(X, p2)Π−−(X, p2), (78)

where taij is the matrix of the color group in the represen-
tation of the quarks. Now note that using the fact that
[iG−−]† = iG++ and FQL = taijt

b
jitr(t

bta), one can rewrite
eq. (76) in terms of these matrix elements, i.e.

J
(2)loss
coll,QL,b)=

π

Ep

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(p+p1−p2)

×Ma)
qq̄→g[Md)

qq̄→g]
†fq(X, �p )fq̄(X, �p1)f̄g(X, �p2), (79)

illustrating that the cross term between these two pro-
cesses, denoted symbolically as ad†, is derived from the
self-energy diagram QL b) of fig. 6. The gain term can be
obtained by replacing f with f̄ and vice versa in eq. (79).

In a similar fashion, the collision integral can be con-
structed from the quark-loop diagram QL c) in fig. 6. One
obtains an expression for the loss term as in eq. (76) with
G++ Π++ replaced by the combination G−− Π−−. Again
J

(2)loss
coll,QL,c) can be expressed by the scattering amplitudes

of eq. (77) and (78):

J
(2)loss
coll,QL,c)=

π

Ep

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(p+p1−p2)

×[Ma)
qq̄→g]

†Md)
qq̄→gfq(X, �p )fq̄(X, �p1)f̄g(X, �p2), (80)

i.e. the second cross term a†d required in building a cross-
section of the basic component a) and d) of fig. 8 is ob-
tained.

In an analogous fashion, one can show that the rainbow
diagrams R b) and c) lead to a collision integral contain-
ing Ma)

qq̄→g[Mf)
qq̄→g]† and the Hermitian conjugate of this

product, the ladder diagrams Lb) and c) to a collision inte-
gral containing Ma)

qq̄→g[Me)
qq̄→g]† and its Hermitian conju-

gate, the cloud diagrams C c) and d) to a collision integral
containing Ma)

qq̄→g[Mc)
qq̄→g]† and its Hermitian conjugate,

and finally the exchange diagrams E c) and d) to a colli-
sion integral containing Ma)

qq̄→g[Mb)
qq̄→g]† and its Hermi-

tian conjugate.
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Fig. 9. Quark-loop self-energy diagrams with cut lines (dashed lines).

Note that if we would have only “physical” fields,
i.e. only − vertices, then we would be able to account
for all mixed diagrams that would occur in the construc-
tion of the |Mqq̄→g|2 up to order g4m4, with the exception
of the diagram g) of fig. 8. This graph does not enter into
the collision integral, as it is a renormalization diagram for
the incoming quark, for which the momentum p is fixed
externally.

Returning to our explicit example of the quark-loop
self-energy of fig. 6, one sees that a simple graphical in-
terpretation can be applied to each figure which we have
considered so far. A rule in which all lines that are con-
nected by ± and ∓ are cut in a single path, separates the
graphs QL a) to c) into their component matrix elements.
This is illustrated in fig. 9. This procedure, however, can-
not be applied uniquely to the graph QL d), nor for that
matter to the remaining graphs which are not required for
construction of the mixed terms or direct contributions to
the cross-sections, i.e. the graphs R d) and L d). We are
thus now left with the three graphs QL d), R d) and L d)
which at first sight fit into no apparent scheme, and which
therefore may present difficulties.

We commence with the investigation of L d). To each of
the three-gluon vertices are associated three off-diagonal
gluonic Green functions. Due to the quasiparticle approx-
imation, they have to be on-shell. Therefore each three-
gluon vertex corresponds to a on-shell process of a (mas-
sive) gluon decaying into two (massive) gluons which is
forbidden. For this reason, the diagram L d) vanishes.

For the graphs QL d) and R d), the situation is dif-
ferent. For QL d) we obtain an expression as in eq. (73)
with the product of the five Green functions replaced by
S+−(X, p1)[G+−(X, p2)]2S−+(X, p3)S+−(X, p4). In the
quasiparticle approximation the off-diagonal Green func-
tions are on mass shell:

p2
1 = p2

3 = p2
4 = 0 , (81)

p2
2 = m2 . (82)

In addition to this, the two δ-functions for the energy
momentum conservation of eq. (73) have to be fulfilled.
Therefore we can write for example

0 = p2
3 = (p2 + p4)2 = 2p2p4 + m2. (83)

One possible choice which fulfills these equations is

p2 = (m, 0) and p4 = (−m/2,m/2). (84)

Here and in the following, the first component denotes the
energy and the second one the value of the three momen-
tum leaving its direction arbitrary. From this one obtains
p3 = p2 + p4 = (m/2,m/2) which is on its mass shell.

Thus we are left with the two graphs QL d) and R d).
Our task is now to rewrite these self-energies in terms of
a scattering product. We were able to express all other
self-energy graphs of fig. 6 in terms of scattering ampli-
tudes and saw afterwards, that this corresponds to the
cutting of all off-diagonal propagators. But for the graphs
QL d) and R d) we cannot use this cutting rule, since each
graph consists of five off-diagonal propagators and there-
fore cannot be cut in an obvious and unique way. Note
that the cutting rule must be derived as a consequence of
a calculation and serves in hindsight as an aid.

On the other hand, to obtain |Mqq̄→g|2 up to order
g4m4 correctly, we still have to consider the scattering
amplitudes shown in fig. 8 d′), e′) and f′). Since g′) is
again a renormalization graph for the incoming quark with
fixed momentum, we do not have to consider it. Let us first
note that diagram e′) vanishes for the same reason as the
self-energy graph L d): the inner vertex corresponds to
the (on-shell) decay of a massive particle into two (on-
shell) particles of the same species which is forbidden. For
this reason, we still need the products Ma)

qq̄→g[Md′)
qq̄→g]†,

Ma)
qq̄→g[Mf ′)

qq̄→g]† and their Hermitian conjugates.

As mentioned in appendix A, to obtain the absolute
square of a scattering amplitude, one needs the scattering
amplitude times its Hermitian conjugate in position space.
The latter is obtained from the original scattering ampli-
tude by interchanging − with + vertices and vice versa
[23]. So far, we have considered only scattering amplitudes
containing − vertices only, for which the Hermitian con-
jugate in position space, i.e. the same amplitude but all
vertices are +, is also the Hermitian conjugate in momen-
tum space, since [iD−−]† = iD++ and (−igm)† = +igm.
But now we have to consider scattering amplitudes con-
taining both types of vertices, and this difference therefore
matters.

After we have clarified the meaning of Hermitian con-
jugation, we take a closer look at the diagram QL d) of
fig. 6.

As before, we obtain an expression for the loss term as
in eq. (76) with G++ Π++ replaced by G+− Π−+ to read
as

−iΣ
(2)+−
QL,d) (X, p) = g2m2F 2

QL

∫
d4p1

(2π)4
d4p2

(2π)4

×(2π)4δ(4)(p − p1 − p2) iS+−(X, p1)
×iG+−(X, p2) (−iΠ−+(X, p2))iG+−(X, p2). (85)
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On the other hand, the scattering amplitude of fig. 8d′)
is given by

−iMd′)
qq̄→g = −igm[tbjitr(t

bta)]

⊗[tsmltr(t
str)]G+−(X, p2)Π−+(X, p2). (86)

Therefore one can express J
(2)loss
coll,QL,d) by the scattering am-

plitudes of eq. (77) and (86):

J
(2)loss
coll,QL,d) =

π

Ep

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

×(2π)4δ(4)(p + p1 − p2)

×[Ma)
qq̄→g]

†Md′)
qq̄→gfq(X, �p )fq̄(X, �p1)f̄g(X, �p2). (87)

Note that it is not possible to express J
(2)loss
coll,QL,d) in terms of

Ma)
qq̄→g [Md′)

qq̄→g]†. The latter amplitude is obtained from
the graph in fig. 8d′) by replacing all − vertices with +
vertices and vice versa. It reads

[−iMd′)
qq̄→g]

† = igm[tbjitr(t
bta)]

⊗[tsmltr(t
str)]G−+(X, p2)Π+−(X, p2). (88)

Since in eq. (85) p2 is integrated over, we are free to re-
place p2 by −p2. Noting that G+−(X,−p2) = G−+(X, p2)
and Π−+(X,−p2) = Π+−(X, p2), we obtain an expression
which superficially resembles the one in eq. (88). However,
on the other hand, the second G+−(X,−p2) yields a fac-
tor f̄g(X,−p2) which does not correspond to the process
[−iMd′)

qq̄→g]†, for which a gluon with momentum +p2 is
outgoing.

In a similar fashion, one can show that the remaining
rainbow graph R d) of fig. 6 leads to a collision integral
containing [Ma)

qq̄→g]† Mf ′)
qq̄→g. A collision integral contain-

ing the Hermitian conjugate term Ma)
qq̄→g Mf ′)

qq̄→g]† is not
obvious, but is in fact present. This is discussed in the
following section.

We compare this result with real-time thermal field
theory for which cutting rules were derived in the ‘80s
by Kobes and Semenoff [24,25] and in the ‘90s by Be-
daque, Das, and Naik [26] (for a comparison of these two
approaches see [27]). Kobes and Semenoff investigated in
[25] self-energy graphs with one type of particles. For the
two-loop self-energy graph containing a self-energy inser-
tion (corresponding, e.g., to our quark-loop graph with
only one type of particles) they found that three graphs
can be cut as shown in fig. 9 and can be interpreted in
terms of products of scattering amplitudes, while the last
graph (in our case Σ+−

QL,d)) cannot be cut, but corresponds
to a product of scattering amplitudes of which one con-
tains a + vertex (in our case this is the product a†d′). To
this extent, their result is similar to ours. They concluded
that decay amplitudes with only − vertices correspond di-
rectly to specific cuts of the associated self-energy graph
while decay amplitudes containing some + vertices corre-
spond to self-energy graphs which are not cuttable. They
did not state that one product (i.e. in our case a d′†) is
missing nor is an explanation given for this.

For the derivation of the cutting rules of Bedaque et
al., the KMS relation was used and can therefore not be
generalized directly for non-equilibrium systems. In their
approach all “uncuttable” graphs cancel when a summa-
tion over the internal vertices (s = −,+) is performed.
The discrepancy with the approach of Kobes and Semenoff
lies in the difference in definition of the propagators which
are to be cut. A closer analysis of Gelis [27] has revealed
that uncuttable graphs in the sense of Kobes and Semenoff
are hidden in the cuttable graphs of Bedaque et al. As an
example, they have investigated the two-loop self-energy
graphs with a vertex correction (these graphs correspond
to our cloud graphs with only one type of particles). But
these graphs are problem-free anyway and they have found
the same products of scattering amplitudes as we have.

Let us conclude this section by commenting that the
collision integral constructed from a first set of two-loop
self-energy diagrams, i.e. the graphs R a), L a), C a) and
b), E a) and b), and QL a) of fig. 6, was expressed in terms
of all possible 2 → 2 cross-sections. The collision integral
constructed from the remaining self-energy diagrams of
fig. 6 was rewritten in terms of products of scattering am-
plitudes of the process qq̄ → g. In this fashion, however, it
is not possible to obtain an absolute square of the sum of
amplitudes a) to f′) shown in fig. 8 up to order g4m4 since
two products, i.e. Ma)

qq̄→g [Md′)
qq̄→g]† and Ma)

qq̄→g [Mf ′)
qq̄→g]†

are still missing. We will tackle this issue in the next sec-
tion.

5.3 Another approach

We found in the last section that it was not possible to
obtain an absolute square of the sum of the amplitudes
a) - f′) shown in fig. 8 up to order g4m4 since two prod-
ucts, i.e. Ma)

qq̄→g [Md′)
qq̄→g]† and Ma)

qq̄→g [Mf ′)
qq̄→g]† are still

missing.
For the first product, one requires [Md′)

qq̄→g]† given in
eq. (88). This amplitude contains the self-energy inser-
tion Π+−(X, p2) which cannot be obtained from the self-
energy graph Σ

(2)+−
QL,d) as explained in the last section after

eq. (88). The only other self-energy graph which could pos-
sibly supply this self-energy insertion is obviously Σ

(2)+−
QL,a)

of fig. 6. Thus let us look at this graph again in more
detail: its contribution to the collision integral reads

J
(2)loss
coll,QL,a) = g2m2 π

Ep

∫
d4p1

(2π)4
d4p2

(2π)4

×(2π)4 δ(4)(p − p1 − p2) iS+−(X, p1)
×iG−−(X, p2)

[−iΠ+−(X, p2)
]

×iG++(X, p2) fq(X, �p ). (89)

Here and in the following we suppress the color fac-
tors for simplicity. Inserting the quasiparticle approxima-
tion iS+−(X, p1) = π/E1{δ(E1 − p0

1)f̄q(X, p1) + δ(E1 +
p0
1)fq̄(X,−p1)} yields two contributions. The first one is
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proportional to f̄q(X, p1) and is considered later. The sec-
ond one is proportional to fq̄(X,−p1) and gives

J
(2)loss 2nd

coll,QL,a) = g2m2 π

Ep

∫
d3p1

2E1(2π)3
d4p2

(2π)4

×(2π)4 δ(3)(�p + �p1 − �p2) δ(Ep + E1 − p0
2)

×iG−−(X, p2)
[−iΠ+−(X, p2)

]
×iG++(X, p2) fq̄(X, �p1) fq(X, �p ), (90)

where p1 was substituted by −p1 and the p0
1-integration

was performed. Now we insert the quasiparticle approx-
imation of eqs. (22) and (23) for G∓∓(X, p2). Using the
relation

±i

p2
2 − m2 ± iε

= P
±i

p2
2 − m2

+ πδ(p2
2 − m2) (91)

and the fact that∫
dp0

2 P
1

p2
2 − m2

δ(E2 ± p0
2) = 0, (92)

where P denotes the principal value, we find

J
(2)loss 2nd

coll,QL,a) = g2m2 π

Ep

∫
d3p1

2E1(2π)3
d4p2

(2π)4

×(2π)4 δ(3)(�p+�p1−�p2) δ(Ep+E1−p0
2)
[−iΠ+−(X, p2)

]
×
{∣∣∣∣P i

p2
2 − m2

∣∣∣∣
2

+
[

π

E2
δ(E2 − p0

2)
(

fg(X, p2) +
1
2

)

+
π

E2
δ(E2 + p0

2)
(

fg(X,−p2) +
1
2

)]2}

×fq̄(X, �p1) fq(X, �p ). (93)

The energy conserving δ-function yields p0
2 = Ep + E1 >

0. Therefore the term proportional to δ(E2 + p0
2) cannot

contribute and the term in the curly brackets reads{∣∣∣∣P i

p2
2−m2

∣∣∣∣
2

+
[

π

E2
δ(E2−p0

2)
(

fg(X, p2) +
1
2

)]2}

=
∣∣∣∣P i

p2
2−m2

∣∣∣∣
2

+
π2

E2
2

δ2(E2−p0
2)
(

fg(X, p2)f̄g(X, p2)+
1
4

)

=
∣∣∣∣P i

p2
2−m2

∣∣∣∣
2

+
π

E2
δ(E2−p0

2)f̄g(X, p2)

× π

E2
δ(E2−p0

2)fg(X, p2) +
[

π

2E2
δ(E2−p0

2)
]2

=
∣∣∣∣P i

p2
2−m2

∣∣∣∣
2

+
π

E2
δ(E2−p0

2)f̄g(X, p2)

×Θ(p0
2)iG

−+(X, p2) +
[
πΘ(p0

2)δ(p2−m2)
]2

=
∣∣∣∣ i

p2
2−m2 + iε

∣∣∣∣
2

+
π

E2
δ(E2−p0

2)f̄g(X, p2) iG−+(X, p2).

(94)

In the last step we have used p0
2 > 0 and eqs. (91) and

(92). Inserting this expression in eq. (93) gives

J
(2)loss 2nd

coll,QL,a) = g2m2 π

Ep

∫
d3p1

2E1(2π)3
d4p2

(2π)4

×(2π)4 δ(4)(p + p1 − p2)
[−iΠ+−(X, p2)

]
×
{∣∣∣∣ i

p2
2 − m2 + iε

∣∣∣∣
2

+
π

E2
δ(E2 − p0

2)

×f̄g(X, p2) iG−+(X, p2)

}
fq̄(X, �p1) fq(X, �p ). (95)

We can express the second term in terms of the scattering
amplitude [−iMd′)

qq̄→g]† of eq. (88) to obtain

J
(2)loss 2nd

coll,QL,a) = g2m2 π

Ep

∫
d3p1

2E1(2π)3
d4p2

(2π)4

×(2π)4 δ(4)(p + p1 − p2)
[−iΠ+−(X, p2)

]
×
∣∣∣∣ i

p2
2 − m2 + iε

∣∣∣∣
2

fq̄(X, �p1) fq(X, �p )

+
π

Ep

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
(2π)4 δ(4)(p + p1 − p2)

×Ma)
qq̄→g [Md′)

qq̄→g]
† fq(X, �p ) fq̄(X, �p1) f̄g(X, �p2). (96)

Let us comment on this result. The second term
gives precisely the contribution we were looking for,
i.e. the missing product of the scattering amplitudes
Ma)

qq̄→g [Md′)
qq̄→g]†! The first term however gives the same

contribution as eq. (90) with the non-equilibrium propa-
gators G∓∓(X, p2) replaced by the Feynman propagators
G

(∗)
F (p2) = (−)i/(p2

2 − m2 ± iε). Therefore we can make
the same manipulations with this term as we did with the
first term of eq. (50) in subsubsect. 5.1.1. There, we found
that only one term proportional to fq̄(X, �p1) contributed
to J

(2)loss
coll,QL,a), i.e. T3 of eq. (51). We showed that this term

corresponds to the s-channel of the process qq̄ → qq̄. Thus,
we can rewrite the first term of eq. (96) in a similar fashion
to eq. (57) and obtain for eq. (96)

J
(2)loss 2nd

coll,QL,a) =
π

Ep

∫
d3p1

2E1(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3

×(2π)4 δ(4)(p + p1 − p3 − p4)

× ∣∣Ms-channel
qq̄→qq̄

∣∣2 fq(X, �p ) fq̄(X, �p1) f̄q(X, �p3) f̄q̄(X, �p4)

+
π

Ep

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
(2π)4 δ(4)(p + p1 − p2)

×Ma)
qq̄→g [Md′)

qq̄→g]
† fq(X, �p ) fq̄(X, �p1) f̄g(X, �p2), (97)

where for
∣∣Ms-channel

qq̄→qq̄

∣∣2 the Feynman propagator GF is
used. Here, the gluon propagator can be on-mass shell,
and the difference between the non-equilibrium propaga-
tor G−− and the Feynman propagator GF matters.

We consider now the contribution to J
(2)loss
coll,QLa) of

eq. (89) given by the first term of iS+− proportional to
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f̄q(X, p1). We have already evaluated this contribution in
subsubsect. 5.1.1. It gives the terms T5-T8 of eq. (51). We
showed that only T5 and T8 were non-vanishing and lead
to the t-channel of quark-antiquark scattering and to the
t- and u-channel of quark-quark scattering shown in fig. 7
a) and b). In each of these channels the gluonic propaga-
tor cannot be on-mass shell. Therefore the on-shell part
of G−− does not contribute and we can replace the non-
equilibrium propagator G−− by the Feynman propagator
GF.

In subsect. 5.1.1, we derived the mixed terms for qq

and qq̄ scattering from the exchange graph Σ
(2)+−
E,b) given

in eq. (49). We investigate now the question whether it
is possible to replace the gluonic non-equilibrium prop-
agators G∓∓ by the Feynman propagators again. This
difference only matters for the s-channel where the glu-
onic propagator can be on-shell. Therefore we investigate
now the mixed term from the s- and t-channel of quark-
antiquark scattering. This mixed term is given in the first
term of eq. (53) and the contribution of the gluonic propa-
gators reads G−−(X, p+p1)G++(X, p−p3)+G−−(X, p−
p3)G++(X, p + p1). Setting G∓∓ = G

(∗)
F + Gn.e., where

Gn.e. denotes the on-shell non-equilibrium part of the diag-
onal propagators, and using the fact that the gluon prop-
agator of the t-channel is off-shell, we find

G−−(X, p + p1)G++(X, p − p3)
+G−−(X, p − p3)G++(X, p + p1)

= [GF(X, p + p1) + Gn.e.(X, p + p1)]P
−i

(p − p3)2 − m2

+P
i

(p − p3)2 − m2
[G∗

F(X, p + p1) + Gn.e.(X, p + p1)]

= GF(X, p + p1)P
−i

(p − p3)2 − m2

+P
i

(p − p3)2 − m2
G∗

F(X, p + p1). (98)

Thus the non-equilibrium part of the gluonic propagator
of the s-channel does not contribute and one can replace
the non-equilibrium propagators by their Feynman coun-
terparts. To summarize, the contributions of Σ

(2)+−
QL,a) and

Σ
(2)+−
Eb) to the collision integral read

J
(2)loss
coll,q =

π

Ep

∫
d3p1

2E1(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3

×(2π)4 δ(4)(p + p1 − p3 − p4)

×
{

1
2
|Mqq→qq|2 fq(X, �p ) fq(X, �p1) f̄q(X, �p3) f̄q(X, �p4)

+ |Mqq̄→qq̄|2 fq(X, �p ) fq̄(X, �p1) f̄q(X, �p3) f̄q̄(X, �p4)
}

+
π

Ep

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
(2π)4 δ(4)(p + p1 − p2)

×Ma)
qq̄→g [Md′)

qq̄→g]
† fq(X, �p ) fq̄(X, �p1) f̄g(X, �p2), (99)

where for the quark-quark and quark-antiquark scattering
Feynman propagators are used.

As was stated at the beginning of this section, the
product Ma)

qq̄→g [Mf ′)
qq̄→g]† is still missing. Obviously it can

only emerge from the self-energy graph Σ
(2)+−
R,a) . Since the

rainbow and the quark-loop graphs have similar topolo-
gies, this product can be derived in an analogous way.
In subsubsect. 5.1.2, we showed that Σ

(2)+−
R,a) yields the

t- and u-channel of the process qq̄ → gg and the s- and
u-channel of the process qg → qg shown in fig. 7. Due
to our choice of masses none of the propagators of these
channels can be on-mass shell, i.e. only the principal val-
ues of the propagators contribute. Therefore it makes no
difference if one uses the non-equilibrium or the (tem-
perature independent) Feynman propagators! We empha-
size that the self-energy graph Σ

(2)+−
R,a) not only yields the

above-mentioned absolute squares of scattering channels
but also the “missing” product Ma)

qq̄→g [Mf ′)
qq̄→g]† without

any change of propagators. This result is quite surprising
and could not be derived by any “cutting rules”.

We comment that also the gluonic propagator is off-
shell for the s-channel of the process qq̄ → gg. Otherwise
it could not decay into two on-shell gluons.

We conclude that only the exchange propagator of the
s-channel of qq̄ scattering can be on-mass shell, and only
in this case the substitution of the non-equilibrium prop-
agator by the Feynman propagator matters.

We summarize the result of this section. Collecting all
contributions of the Fock and the two-loop self-energies to
the collision integral, the transport equation reads

2p∂Xfq(X, p) =
∫

d3p1

(2π)32E1

d3p2

(2π)32E2

×(2π)4δ(4)(p + p1 − p2)|Mg→qq̄|2
×[fg(X, p2)f̄q̄(X, p1)f̄q(X, p)
−f̄g(X, p2)fq̄(X, p1)fq(X, p)]

+
∫

dΩ
d3p1

(2π)32E1
|�vp − �v1| 2Ep 2E1

×
{

4∑
j=1

sj
dσj

dΩ

∣∣
qa→bc

× [f̄q(X, �p ) f̄a(X, �p1) fb(X, �p3) fc(X, �p4)

−fq(X, �p ) fa(X, �p1) f̄b(X, �p3) f̄c(X, �p4)
]}

, (100)

where j denotes the four processes j = 1...4 corresponding
to qq̄ → gg, qg → qg , qq → qq and qq̄ → qq̄. The sj are
symmetry factors s1 = s3 = 1/2 and s2 = s4 = 1. This
equation is correct up to order g4m4.

For the evaluation of the 2 → 2 cross-sections, the
Feynman propagators, i.e. the T = 0 equilibrium propa-
gators were used, while for the evaluation of the process
qq̄ → g up to order g4m4 the non-equilibrium propagators
of eqs. (20) to (23) were used.

One last comment is in order: for this derivation we
evaluated the self-energy graphs directly with the help of
Feynman rules. We were able to rewrite each self-energy
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graph in terms of one or several products of scattering
amplitudes. It is not possible to find “cutting rules” from
which the same result could be obtained.

Let us now compare our work with results found by
other authors. Blaizot and Iancu [15] found a collision
term containing the absolute square of a matrix element
corresponding to the t-channel of particle-particle scatter-
ing, and to the s- and t-channel of particle-antiparticle
scattering. The u-channel of particle-particle scattering
nor the mixed terms between the channels are included.
For the evaluation of the scattering amplitudes the equi-
librium retarded propagator is used and not the causal
propagator as we have.

Baier et al. [28] study the production of thermal dilep-
tons in a hot pion gas, examining the two-loop diagrams
that can occur within the theory. In their approach, these
graphs are subdivided as giving rise to real and virtual
processes, and in doing so, the exchanged meson is rep-
resented accordingly by its principal or thermal parts, re-
spectively.

6 n → m processes

Up to this point, we have made a semiclassical expan-
sion that involves keeping only the leading term in ex-
panding the exponential in eq. (19) (here the factor �

has been set to one.) In addition, we have examined sets
of diagrams organized according to the number of inter-
action lines, i.e. according to the coupling strength. We
have found that all generic types of graphs are required
in order to build up the cross-sections that ultimately oc-
cur in a Boltzmann-like equation. However, at the level
of two exchanged gluons, we are already faced with five
types of graphs, and this number increases rapidly with
the number of exchanged gluons. One possible simplifying
assumption is the additional imposition of an expansion
in the inverse number of colors. According to such a cri-
terion, the ladder, the rainbow and the cloud diagrams
are leading, since their color factors for one color group
are of order O(N2

c ), while for the quark-loop diagram it
goes as Nc and for the exchange diagram only as N0

c (see
appendix C).

Since the ladder and the rainbow diagrams lead to
cross-sections involving gluons while the quark-loop dia-
gram leads to elastic quark-(anti)quark cross-sections, one
can conclude that the quark degrees of freedom are sup-
pressed in comparison with the gluon degrees of freedom.
This is in agreement with the results of an evaluation of
the quark-quark scattering amplitude within this model
[17], in which the quark degrees of freedom are neglected,
however due to kinematical reasons. Although the ladder
and the rainbow diagrams are both of order O(N2

c ), the
ratio of their color factors for one color group is not one,
but

FR

FL
=

CF

CA
, (101)

which is 4/9 ≈ 1/2 for Nc = 3. Since in the rainbow di-
agram the second gluon couples at the quark-line while

in the ladder diagram it couples at the first gluon, two
quark-quark-gluon vertices are suppressed by a factor 4/9
per color group in comparison with two 3-gluon vertices.
Thus, there is no strict ordering of the gluon graphs ac-
cording to a single class of diagrams, in an expansion in
1/Nc. Although the ladder graphs and the processes that
they lead to appear largest, one should note that the sym-
metry factors of the other graphs compensate for this. A
numerical study is essential to determine the actual order
of magnitude of each graph.

Note that an expansion in color also incorporates the
coupling strength. Assuming that g ∼ 1/Nc, we find that
the Fock term ∼ g2N2

c and the ladder diagram ∼ g4N4
c

are of the same order.
Of the self-energy diagrams of order O(g2n), the ladder

diagram, the rainbow diagram and all possible mixtures
between these two are leading in an expansion in 1/Nc. On
evaluation, these diagrams lead to the scattering process
qq̄ → ng and all possible crossed processes, such as qq̄g →
(n− 1)g, qg → q(n− 1)g, ... in which at least two partons
occur both in the initial and final states. In addition to
this, they lead to corrections of order O(g2n) to lower-
order processes. The Boltzmann equation for quarks then
reads

2p∂Xfq(X, �p ) =
∫

d3k

(2π)32Ek

d3p1

(2π)32E1

×(2π)4δ(4)(p + k − p1)|Mqq̄→g|2

×
[
f̄q(X, �p )f̄q̄(X,�k)fg(X, �p1)

−fq(X, �p )fq̄(X,�k)f̄g(X, �p1)
]

+
∞∑

m,n=1

∫
d3k

(2π)32Ek

d3p1

(2π)32E1
...

d3pm+n

(2π)32Em+n
(2π)4

×
{

δ(4)(p + k + p1 + ... + pm−1 − pm − ... − pm+n)

×sm−1sn+1 |M(qq̄ (m − 1)g → (n + 1)g)|2

×
[
f̄q(�p )f̄q̄(�k)f̄g(�p1)...f̄g(�pm−1)fg(�pm)...fg(�pm+n)

−fq(�p )fq̄(�k)fg(�p1)...fg(�pm−1)f̄g(�pm)...f̄g(�pm+n)
]

+δ(4)(p + p1 + ... + pm − k − pm+1 − ...

−pm+n)smsn |M(q mg → q ng)|2

×
[
f̄q(�p )f̄g(�p1)...f̄g(�pm)fq(�k)fg(�pm+1)...fg(�pm+n)

−fq(�p )fg(�p1)...fg(�pm)f̄q(�k)f̄g(�pm+1)...f̄g(�pm+n)
]}
(102)

with the symmetry factors sn = 1/n!.

7 Pinch singularities

When dealing with transport theory, and in particular
when applying the quasiparticle assumption to processes
of higher order, it becomes mandatory to examine another
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possible problem which can arise, the issue of so-called
pinch singularities. To elucidate this, let us look again at
the quark-loop self-energy diagrams shown in fig. 6. We
can write the sum of these four self-energy graphs as

Σ
(2)+−
QL (X, p) ≡ Σ

(2)+−
QL,a) (X, p) + Σ

(2)+−
QL,b) (X, p)

+Σ
(2)+−
QL,c) (X, p) + Σ

(2)+−
QL,d) (X, p) =

ig2m2

∫
d4k

(2π)4
iS+−(X, p − k) iF+−

QL (X, k) (103)

with

F+−
QL (X, k) ≡ G++(X, k)Π+−(X, k)G−−(X, k)

+G++(X, k)Π++(X, k)G+−(X, k)
+G+−(X, k)Π−−(X, k)G−−(X, k)
+G+−(X, k)Π−+(X, k)G+−(X, k) , (104)

where Πij is defined in eq. (72) and all color factors are
suppressed for simplicity.

We see that in eq. (104) each term contains two glu-
onic propagators with the same argument. Since the off-
diagonal propagators are on-shell and also the diagonal
propagator contain on-shell parts, seen in the δ-functions
that are present, we obtain for each term a product of two
δ-functions, which is clearly divergent.

This is a manifestation of so-called pinch singulari-
ties. The etymology is made evident if we express F+−

QL

in terms of the retarded and advanced components given
in eqs. (B.4), (B.5), (B.11) and (B.12):

F+−
QL (X, k) ≡ GR(X, k)ΠR(X, k)G+−(X, k)

+G+−(X, k)ΠA(X, k)GA(X, k)

−GR(X, k)Π+−(X, k)GA(X, k). (105)

In the last term the product

GR(X, k)GA(X, k) =
1

k2 − m2 + iε

1
k2 − m2 − iε

(106)

has a pinch singularity, since an integration contour run-
ning along the real k0 axis is “pinched” between the two
poles for ε → 0. For the rainbow and ladder self-energy
graphs of fig. 6, the situation is similar as for the quark-
loop graph: each graph contains two propagators with the
same argument. Therefore pinch singularities may occur
in these terms, too.

In equilibrium, however, studies over the last decade
show that pinch singularities vanish in the calculations of
physical quantities [29,30] in a well-defined theory (such
as thermal field theory). Since in the literature, there are
only a few examples for a few cases, we indicate explic-
itly in appendix D how the pinch singularities are can-
celed for the self-energies that are required in our model,
see fig. 6, when considered in equilibrium. Unfortunately,
these calculations cannot be generalized for the case of
non-equilibrium since the derivation depends on the KMS
relation, which is only valid in equilibrium.

To conclude this section, we mention several results in
the literature: Dadić developed two mechanisms for the
elimination of pinch singularities in non-equilibrium [31].
The first one is based on the vanishing of phase space at
the singular point, and it can be applied, e.g., to QED
with massive electrons and massless photons. This how-
ever does not apply to our theory, since we have massless
quarks and massive gluons. Greiner and Leupold [32] have
showed that the pinch singularities are due to the infinite
duration time of the interaction and can be regulated by a
finite duration time. Bedaque [33] has argued that pinch
singularities do not appear in non-equilibrium if the in-
teraction is switched on at a finite time (should the fields
have interacted since t = −∞, they should have attained
equilibrium by any finite time).

8 The constraint equation

So far we have treated only the transport equation (28) as
an isolated equation. As we have seen, this in itself has a
complexity in deriving an extended Boltzmann equation.
The main assumption that has been made is the quasi-
particle approximation, and this has been inserted into
every level of calculation of the self-energy. In principle,
however, the transport equation does not stand alone, but
must be solved simultaneously with the constraint equa-
tion, which in practice must be newly evaluated for each
additional term in the expansion (here in the coupling
constant and of the self-energy) that has been used. In
sect. 3, we demonstrated explicitly that the constraint
equation gives rise to the quasiparticle approximation for
free streaming. Here this corresponds to the Hartree ap-
proximation for the self-energy. In general, however, this is
not so. We thus take a closer look at the constraint equa-
tion (29). Using the relations (B.2),(B.3) and (B.9), we
can rewrite the constraint equation in a simpler form as[

p2 − M2 + �Π−−(X, p)
]
D−+(X, p) =

Π−+(X, p)�D−−(X, p). (107)

With the aid of eqs. (B.2), (B.4), (B.5), (B.26) and (B.27),
we can express the real part of D−− as

2�D−−(X, p) = D−−(X, p) − D++(X, p) =

DR(X, p) + DA(X, p) =
1

p2 − M2 + ΠR(X, p)
+

1
p2 − M2 + ΠA(X, p)

. (108)

Using eqs. (B.10) to (B.12), one finds

�ΠR(X, p) = �ΠA(X, p) = �Π−−(X, p) , (109)

�ΠR(X, p) = −�ΠA(X, p) = p0 Γ (X, p) , (110)

where the width Γ is defined as

Γ (X, p) =
i

2p0
(Π+− − Π−+). (111)
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Inserting eqs. (109) and (110) into eq. (108) leads to

�D−−(X, p) =
p2 − M2 + �Π−−(X, p)

[p2−M2+�Π−−(X, p)]2+[p0 Γ (X, p)]2
.

(112)
Substituting p with −p in eq. (107) yields the relation[

p2 − M2 + �Π−−(X, p)
]
D+−(X, p) =

Π+−(X, p)�D−−(X, p). (113)

Subtracting (107) from (113) gives[
p2 − M2 + �Π−−(X, p)

]A(X, p) =

2p0 Γ (X, p)
p2 − M2 + �Π−−(X, p)

[p2−M2+�Π−−(X, p)]2+[p0 Γ (X, p)]2
,

(114)

where the spectral density A is defined through the com-
bination

A(X, p) = iD+−(X, p) − iD−+(X, p). (115)

For p2 − M2 + �Π−−(X, p) �= 0, eq. (114) gives

A(X, p) =
2p0 Γ (X, p)

[p2 − M2 + �Π−−(X, p)]2 + [p0 Γ (X, p)]2
.

(116)
If A is calculated, one can immediately find expressions
for the off-diagonal Green functions via

iD−+(X, p) = Θ(p0)A(X, p) fa(X, p)
−Θ(−p0)A(X, p) f̄ā(X,−p) , (117)

iD+−(X, p) = Θ(p0)A(X, p) f̄a(X, p)
−Θ(−p0)A(X, p) fā(X,−p) , (118)

and subsequently for the diagonal Green functions with
the help of eqs. (22) and (23). In the limit of vanishing self-
energies (and therefore vanishing width Γ ) A simplifies to

A(X, p) −→ 2πδ(p2 − M2) sign(p0) (119)

and for the Green functions one regains the quasiparticle
approximation eqs. (20) to (23) as it should be.

One thus finds the situation that higher-order correc-
tions to the transport equation should, strictly speak-
ing, be evaluated with propagators that contain a finite
width Γ . This has both advantages and disadvantages.
The main advantage is that no pinch singularities can
possibly occur with the use of a finite width by defini-
tion (see also ref. [34]). Thus, one may definitively state
that non-equilibrium theory is non-singular; any apparent
singularities are a result of using an inconsistent approxi-
mation and these may be removed by the introduction of
a cutoff related to a width.

The disadvantages of using a finite width are mani-
fold: Firstly the presence of a finite width automatically
admits all possible processes: for example, the first ex-
change and quark-loop diagrams led to a sum of eight
terms, eq. (51). These in turn led to two possible types of

scattering processes that were admissible, with the restric-
tion being directly due to the quasiparticle assumption.
In the presence of a finite width, all eight terms would be
non-vanishing. In this sense, the theory is expanded well
over the Boltzmann approach. Furthermore, an additional
complexity arises. The transition from Green functions to
the more physical quantities, the distribution functions,
in terms of which the Boltzmann equation is expressed,
no longer becomes possible. Thus the evaluation of phys-
ical entities becomes more distanced from our knowledge
of the Boltzmann equation. It is our point of view that
research in both directions is interesting. While it is more
easily conceivable to do physics in extending the Boltz-
mann equation, it is equally necessary to attempt to solve
the exact equations, and determine the difference between
these two approaches. From an analytic point of view, it
is not simple to extract this difference. Rather numerical
calculations should prove interesting and insightful.

In the literature [13], the assumption of a finite width
is made and introduced into transport equations. At this
point, however, all connection with field theory becomes
obscure: it is now essential to introduce a “test-particle
ansatz”, as the spectral distribution is altered, and a direct
connection to diagrams is no longer evident.

9 Summary and conclusions

In this paper, we have detailed the calculation of the trans-
port and constraint equations for a theory of scalar quarks
and gluons. Special care has been taken in particular in
understanding how the transport equation, taken on its
own, leads to a Boltzmann-like equation when considered
in the quasiparticle approximation. This calculation goes
beyond those previously mentioned in the literature, in
that all the graphs that occur are analyzed in their full
complexity. Through this analysis, it is evident which role
they play: certain graphs give rise to the expected cross-
sections, while others serve to renormalize lower-order di-
agrams to the same order in the coupling constant. It is
furthermore an interesting result that the diagrammatics
of this theory that favor only gluon ladder graphs in qq
scattering is not simply reflected here. In a 1/Nc approx-
imation, all gluonic processes dominate over quark loop
processes, but gluon ladders per se are not singled out.
This result can be generalized to higher orders.

Several problems emerged in the calculation of the
transport equation: firstly it is not independent of the
constraint equation, and secondly several terms within the
quasiparticle approximation appear individually to be sin-
gular. We have thus devoted a section to the discussion of
the constraint equation pointing out the advantages and
disadvantages of introducing a width. The issue of pinch
singularities on its own has also been discussed in detail.
In particular, we have demonstrated that the singularities
in a series of graphs vanish, at least when considered in
equilibrium. An exact proof in non-equilibrium has how-
ever not been found.
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Greiner and S. Leupold for stimulating discussions.

Appendix A. Real-time thermal field theory

In this appendix, we briefly review the real-time formalism
of thermal field theory (see e.g. [35,36,23]). The real-time
contour goes from −τ to +τ on the real axis, then drops
vertically down to +τ − iσ, runs parallel to the real axis
back to −τ − iσ and finally down to −τ − iβ. Here the
parameter σ takes a value between 0 and β. One assumes
that in the limit τ → ∞ the vertical segments of the con-
tour C decouple in the path integral and do not contribute
to Green functions with time arguments on the horizon-
tal segments. For simplicity, the spatial coordinates are
suppressed in this appendix. Writing the fields on the up-
per and the lower horizontal segments as functions of real
times, φ̂−(t) = φ̂(t) and φ̂+(t) = φ̂(t − iσ), respectively,
the generating functional for the Green functions reads as

Z[J+, J−] = Z[0, 0]
〈

TC exp
{

i

∫ ∞

−∞
dt φ̂sJs

}〉
, (A.1)

where the sign index s runs over {−,+} and J−(t) is de-
fined to be the source on the upper segment and J+(t) =
−J(t− iσ) the source on the lower one. The minus sign in
the latter absorbs the minus sign from the opposite direc-
tion of the lower contour. Note, that in our notation the
“−” sign is associated with the upper branch as in [20]
and in contrast to [36]. In the ‘80s, the “−” fields were
termed physical fields according to the idea that physical
observables would be expressible in terms of Green func-
tions with only “−” fields on the external legs. The “+”
fields were consistently called ghost fields. This is not a
valid supposition. As a simple example, the mass term
ΠR is made up of both Π−− and Π−+, see eq. (B.11).
There are also other interesting physical quantities with
“+” fields on their external legs, see, e.g., the collision
term of eq. (16).

Differentiation with respect to J−(t) and J+(t) then
gives the real-time Green functions

Gs1...sN
σ (t1, ...tN ) :=

δiJs1 (t1)...δiJsN
(tN ) Z[J−, J+]

Z[J−, J+]

∣∣∣∣∣
J−=0,J+=0

. (A.2)

The contour ordering TC implies that this real-time Green
function is the thermal average of a product of field op-
erators where the ordering is such that the “−” fields are
time-ordered and put on the right-hand side and the “+”
fields are anti-time-ordered and put on the left-hand side.
Performing a Fourier transform

Gs1...sN
σ (ω1, ..., ωN ) :=∫
dt1...dtN exp

{
i
∑

i

ωi ti

}
Gσ

s1...sN
(t1, ..., tN ) (A.3)

yields the relation between Green functions with different
values of σ,

Gs1...sN
σ (ω1, ..., ωN ) =

exp


−

∑
i|si=+

σ ωi


 Gs1...sN

σ=0 (ω1, ..., ωN ). (A.4)

Note that the value σ = 0 corresponds to a closed time
path (CTP) or Schwinger-Keldysh formalism, see fig. 3,
while σ = β/2 corresponds to the choice for thermo field
dynamics. From eq. (A.2) one obtains the real-time prop-
agators as

iD−−
σ (t − t′) = 〈T φ̂(t)φ̂(t′)〉 ,

iD++
σ (t − t′) = 〈T̃ φ̂(t − iσ)φ̂(t′ − iσ)〉 ,

iD+−
σ (t − t′) = 〈φ̂(t − iσ)φ̂(t′)〉 ,

iD−+
σ (t − t′) = 〈φ̂(t′ − iσ)φ̂(t)〉 . (A.5)

These four propagators can be written in a compact ma-
trix form as

Dσ =
(

D−−
σ D−+

σ

D+−
σ D++

σ

)
. (A.6)

Performing a Fourier transform yields

iD(ω) =
(

iDF(ω) 0
0 iD∗

F(ω)

)
+ 2πδ(ω2 − E2)

×
(

n(|ω|) eσω[Θ(−ω) + n(|ω|)]
e−σω[Θ(ω) + n(|ω|)] n(|ω|)

)
,(A.7)

where iDF is the T = 0 Feynman propagator given by

iDF(ω) =
i

p2 − m2 + iε
(A.8)

and n(ω) is the Bose distribution defined by

n(ω) =
1

eβ ω − 1
. (A.9)

The real-time Feynman rules are much the same as in
zero-temperature field theory. The only difference is, that
to each vertex a sign factor s = −,+ is assigned. For Green
functions, the external vertices are fixed, and all internal
vertices are summed over (which multiplies the number
of graphs, see, e.g., figs. 4 and 6). A vertex with s = −
corresponds to a factor −igm, while a vertex with s = +
corresponds to a factor +igm. A line connecting a vertex
s with a vertex s′ corresponds to a propagator Dss′ given
in eq. (A.5).

An example for a scattering amplitude is shown in
fig. 8. The external vertices are fixed to be s = −, while
the internal vertices can be either − or + and one has to
draw all possibilities. The complex conjugate of such an
amplitude (in position space) is obtained by interchanging
all “−” vertices with “+” vertices and vice versa in the
original amplitude.

The CTP formalism (σ = 0) is now easily general-
ized for non-equilibrium processes by replacing the equi-
librium, real-time thermal propagators defined in eq. (A.2)
by the non-equilibrium propagators given in eqs. (10)
and (11).
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Appendix B. Green functions, transport and
constraint equations

In this appendix, we give a brief guideline for the deriva-
tion of the transport and constraint equations, eqs. (13)
and (14) and list all important properties of the Green
functions.

The Schwinger-Keldysh Green functions defined in
eqs. (10) and (11) can be collected in a matrix as

D =
(

D−− D−+

D+− D++

)
, (B.1)

using the generic notation already introduced in sect. 3.
From the definition of the Green functions, it follows that[

iD−−(x, y)
]† = iD++(x, y), (B.2)

while iD±∓ is Hermitian (e.g., [iD−+(x, y)]† =
iD+−(x, y)), and the relation

D−−(x, y)+D++(x, y)=D−+(x, y)+D+−(x, y), (B.3)

showing that the four components Dij are not indepen-
dent. We define the retarded and advanced Green func-
tions in the standard way as

DR(x, y) := Θ(x0 − y0)[D+−(x, y) − D−+(x, y)]
= D−−(x, y) − D−+(x, y)
= D+−(x, y) − D++(x, y) (B.4)

DA(x, y) := −Θ(y0 − x0)[D+−(x, y) − D−+(x, y)]
= D−−(x, y) − D+−(x, y)
= D−+(x, y) − D++(x, y). (B.5)

The equations of motion that the Green functions satisfy
are

(�x + M2)D(x, y) = −σzδ
(4)(x − y)

+
∫

d4z σz Π(x, z)D(z, y), (B.6)

given in terms of the irreducible proper self-energy

Π =
(

Π−− Π−+

Π+− Π++

)
(B.7)

and

σz =
(

1 0
0 −1

)
. (B.8)

In eq. (B.6), M is the free bosonic parton mass.
The four components of the self-energy are also not

independent. From their definition, the relation

Π−−(x, y)+Π++(x, y)=−(Π+−(x, y)+Π−+(x, y)) (B.9)

can be seen to hold. The off-diagonal components are
again Hermitian, while the diagonal ones fulfill[

iΠ−−(x, y)
]† = iΠ++(x, y). (B.10)

The retarded and advanced self-energies are defined to be

ΠR(x, y) = Π−−(x, y) + Π−+(x, y) , (B.11)

ΠA(x, y) = Π−−(x, y) + Π+−(x, y) . (B.12)

We now consider specifically the equation of motion for
D−+. This reads

(�x + M2)D−+(x, y) =
∫

d4z{Π−−(x, z)D−+(z, y)

+Π−+(x, z)D++(z, y)} =
∫

d4z{ΠA(x, z)D−+(z, y)

−Π+−(x, z)D−+(z, y) + Π−+(x, z)D+−(z, y)

−Π−+(x, z)DR(z, y)} , (B.13)

while the conjugate equation is

(�y + M2)D−+(x, y) = −
∫

d4z{D−+(x, z)Π++(z, y)

+D−−(x, z)Π−+(z, y)} =
∫

d4z{D−+(x, z)ΠA(z, y)

−DR(x, z)Π−+(z, y)}. (B.14)

Now a Wigner transformation of both equations is per-
formed to yield[

1
4
�X − ip∂X − p2 + M2

]
D−+(X, p) =

ΠA(X, p)Λ̂D−+(X, p) − Π+−(X, p)Λ̂D−+(X, p)

+Π−+(X, p)Λ̂D+−(X, p)−Π−+(X, p)Λ̂DR(X, p) (B.15)

and[
1
4
�X + ip∂X − p2 + M2

]
D−+(X, p) =

D−+(X, p)Λ̂ΠA(X, p) − DR(X, p)Λ̂Π−+(X, p), (B.16)

with the differential operator

Λ̂ := exp
{−i

2

(←−
∂ X

−→
∂ p −←−

∂ p
−→
∂ X

)}
. (B.17)

Subtracting eq. (B.15) from eq. (B.16) gives the so-called
transport equation,

−2ip∂XD−+(X, p) = I−, (B.18)

while adding them yields the so-called constraint equation,(
1
2
�X − 2p2 + 2M2

)
D−+(X, p) = I+, (B.19)

that were quoted as eqs. (13) and (14), and I∓ is as given
in eqs. (15) to (18).

Here and throughout this paper, we work with the
Green functions Dij (i, j = −,+) since they are needed to
calculate properties like the self-energy in a diagrammatic
expansion. As already mentioned, these four components
of D given in eq. (B.1) are not independent of each other.
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[
1

4
�X−ip∂X−p2+M2

](
0 DA(X, p)

DR(X, p) F (X, p)

)
=

(
0 ΠA(X, p)Λ̂DA(X, p) − 1

ΠR(X, p)Λ̂DR(X, p)−1 Ω(X, p)Λ̂DA(X, p)+ΠR(X, p)Λ̂F (X, p)

)
.

(B.25)

Therefore it is possible to transform this matrix that at
least one component vanishes. One possible choice is

D′ = U−1 D U =
(

0 DA

DR F

)
(B.20)

with the transformation matrix

U =
1√
2

(
1 1

−1 1

)
. (B.21)

DR and DA are given in eqs. (B.4) and (B.5), respectively,
and F is defined as F = D−− + D++. The same transfor-
mation gives for the self-energy

Π ′ = U−1 Π U =
(

Ω ΠR

ΠA 0

)
, (B.22)

where ΠR and ΠA are defined in eqs. (B.11) and (B.12),
respectively, and Ω is given as Ω = Π−− + Π++. The
equation of motion (B.6) transforms to

(�x + M2)D′(x, y) =

−σxδ(4)(x − y) +
∫

d4z σx Π ′(x, z)D′(z, y), (B.23)

with

σx =
(

0 1
1 0

)
. (B.24)

Performing a Wigner transformation as above gives

see eq. (B.25) above

In a semiclassical expansion Λ̂ = 1 and the derivatives
with respect to X in the bracket on the left hand side are
neglected. Then the equation for DR can be solved easily
to yield

DR(X, p) =
1

p2 − M2 + ΠR(X, p)
. (B.26)

Similarly, one finds

DA(X, p) =
1

p2 − M2 + ΠA(X, p)
, (B.27)

which is just the Hermitian of eq. (B.26) and contains
therefore no additional information. In sect. 8, these ex-
pressions for DR and DA are used.

Appendix C. Color factors

We now deal with the color factors which were neglected
so far. We calculate them for one SU(N) color group. The
overall color factor for both color groups is then obtained
by squaring it.

The matrices (ta)ij are the matrices of the color group
in the representation of the quarks, while (T a)bc = −ifabc

are the color matrices in the adjoint representation and
fabc are the structure constants of the color group, see
eq. (2). The ta’s are normalized to

tr(tatb) =
1
2
δab. (C.1)

The “square” of the generator in some representation must
be proportional to the unit operator (Schur’s Lemma).
Therefore

(ta)ij(ta)jk = CFδik (C.2)

and
T a

bdT
a
dc = fbadfcad = CAδbc, (C.3)

where the numbers CF and CA are the Casimir opera-
tors of the fundamental and adjoint representation, re-
spectively. They take the values (see for example [37])

CF =
N2

c − 1
2Nc

(C.4)

and
CA = Nc. (C.5)

Consider now the quark self-energies that were evaluated
in sect. 5.1. Let i denote the external parton color index.
It is therefore not to be summed over. The color factor for
the rainbow graph is

FR = tbijt
a
jktaklt

b
li = C2

Fδii =
(N2

c − 1)2

4N2
c

δii. (C.6)

For the ladder graph, one finds

FL = (−ifabc)(−ifcbd)taijt
d
ji =

CAδadt
a
ijt

d
ji = CACFδii =

N2
c − 1
2

δii. (C.7)

For the cloud graph, one obtains

FC = (−ifacb)taijt
b
jktcki = −N2

c − 1
4

δii, (C.8)

where the relation (see for example [37])

−ifabct
atb =

CA

2
tc (C.9)
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has been used. The color factor for the exchange graph is

FE = taijt
b
jktaklt

b
li = −N2

c − 1
4N2

c

δii, (C.10)

where the relation [37]

tatbta =
−1
2Nc

tb (C.11)

has been used. Finally, for the quark-loop graph the color
factor is given by

FQL = taijt
b
jitr(t

atb) =
N2

c − 1
4Nc

δii. (C.12)

In an expansion in 1/Nc, some of the self-energy diagrams
are subleading. For details see sect. 6.

Appendix D. Cancellation of pinch
singularities in equilibrium

In this appendix, we show explicitly, that for our cases the
pinch singularities vanish in equilibrium. For this purpose
it is helpful to use following relations:

Π−−(p) = −Π++(p)∗ , (D.1)

�Π−−(p) =
i

2
[
Π−+(p) + Π+−(p)

]
, (D.2)

Π+−(p) = eβp0 Π−+(p) . (D.3)

The first two are valid in general while the last one, the
so-called Kubo-Martin-Schwinger (KMS) relation, holds
only in equilibrium. We start with the sum of the four
quark-loop graphs shown in fig. 6 QL a) to QL d). With
the help of these relations F+−

QL defined in eq. (104) can
be written as

F+−
QL =�Π−− [−G++ G+− + G+− G−−]

+i�Π−−
[
G++ G+− + G+− G−−

− 2eβp0

eβp0 + 1
G++ G−−− 2

eβp0 + 1
G+−G+−

]
, (D.4)

where the arguments (X, k) are suppressed. Inserting the
propagators of eq. (A.7) and using the fact that

GF(k) + G∗
F(k) = −2πiδ(k2 − m2), (D.5)

one can express F+−
QL in terms of GF and G∗

F. After some
algebra one finds

F+−
QL (X, k) = �Π−−(X, k)

[
G2

F(X, k) − G∗2
F (X, k)

]
× [Θ(k0) + n(|k|)] + i�Π−−(X, k)

×[G2
F(X, k)+G∗2

F (X, k)
] 1

e−βk0 + 1
. (D.6)

No products of the form GF G∗
F occur, and therefore one

may conclude that this expression is free of pinch singu-
larities.

For the sum of the four rainbow graphs shown in fig. 6
R a) to R d), one obtains a similar expression by replacing
the gluonic propagators by quark propagators and the self-
energy insertion Π by the quark Fock self-energy ΣF,q

shown in fig. 5. One finds

F+−
R (X, k) = �Σ−−

F,q (X, k)
[
S2

F(X, k) − S∗2
F (X, k)

]
× [Θ(k0) + n(|k|)] + i�Σ−−

F,q (X, k)

×[S2
F(X, k)+S∗2

F (X, k)
] 1

e−βk0 + 1
, (D.7)

which is also free of pinch singularities.
For the sum of the four ladder graphs shown in fig. 6

L a) to L d) one cannot perform an analogous calcula-
tion since the graph Σ+−

Ld) vanishes due to the vertices
with three on-shell gluons. One finds the expression for
F+−

L (X, k) to be

F+−
L =G++Π̃+−G−−+G++Π̃++G+− + G+−Π̃−−G−−,

(D.8)
where Π̃ is the gluonic Fock self-energy Σ−+

F,g(a) shown in
fig. 5a). Since pinch singularities can occur only on-shell,
we consider now the self-energy insertions on-shell and
find

Π̃+−(X;Ek,�k) = Π̃−+(X;Ek,�k)

= �Π̃−−(X;Ek,�k) = 0 , (D.9)

Π̃−−(X;Ek,�k) = −Π̃++(X;Ek,�k)

= �Π̃−−(X;Ek,�k). (D.10)

Inserting this into eq. (D.8) yields

F+−
L (X;Ek,�k) = �Π̃−−(X;Ek,�k)

×
[
G2

F(X;Ek,�k) − G∗2
F (X;Ek,�k)

] [
Θ(k0) + n(|k|)] .

(D.11)

This expression is also free from pinching, and therefore
F+−

L (X, k) for arbitrary k has no pinch singularities.
We summarize that in equilibrium in single two-loop

self-energy graphs pinch singularities can occur, but the
sum of the graphs a) to d) of one generic type (i.e. rain-
bow, ladder or quark-loop graphs) is free of pinching.

More examples of the cancellation of pinch singulari-
ties in equilibrium are given, e.g., in [38].
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